La physique nucléaire de haute énergie a pour objet l'étude des propriétés du Plasma de Quarks et de Gluons (PQG), un nouvel état de la matière composée de quarks et de gluons asymptotiquement libres. Selon les calculs de la ChromoDynamique Quantique (CDQ) sur réseau, une transition de la matière nucléaire vers un PQG doit se produire pour des densités d'énergie au-delà de ~ 1 GeV/fm3 (correspondant à une température ~ 150 - 200 MeV). De telles conditions extrêmes de température et de densité d'énergie sont réalisées en laboratoire en utilisant des collisions ions lourds aux énergies ultra-relativistes. Le PQG ainsi créé est cependant si fugace qu'il ne peut être étudié que par des sondes internes produites au sein même de la collision mais à des échelles de temps bien inférieures à celle du PQG. Ces sondes dites dures vont alors être modifiée suite à leur interaction avec le PQG, de cette modification s'ensuit l'inférence des propriétés de transport du PQG.Cette thèse porte sur la mesure des jets comme sondes dures du PQG, elle s'articule selon deux axes complémentaires : le développement d'un nouvel algorithme de déclenchement calorimétrique de l'expérience ALICE pour le Run 2 du LHC afin d'efficacement sélectionner les événements contenant une gerbe électromagnétique, ainsi que la mesure de la production inclusive de jets chargés dans les collisions Pb-Pb à l'énergie la plus élevée à ce jour de 5.02 TeV auprès du LHC. Un des défis majeurs de la mesure des jets dans les collisions d'ions lourds consiste à séparer les jets de l'événement sous-jacent. L'approche retenue dans ce travail repose sur une évaluation événement par événement de l'amplitude de cet événement sous-jacent qui est alors soustraite des jets reconstruits. Les fluctuations résiduelles de ce bruit de fond sont par la suite corrigées par une méthode de déconvolution adaptée. Enfin, afin de réduire au maximum la contamination du bruit de fond combinatoire, une coupure de 5 GeV/c sur l'impulsion transverse du constituant prééminent est appliquée.La mesure des facteurs de modification nucléaire des jets montrent une très forte suppression que l'on attribue à la perte d'énergie des partons dans le PQG. Dans ce travail de thèse, une étude phénoménologique de cette manifestation qualifiée "d'étouffement des jets" à partir d'une observable originale, est présentée. Cette étude met en évidence plusieurs résultats fondamentaux : une perte d'énergie constante dans le domaine d'impulsion transverse de jet mesuré (jusqu'à 100 GeV/c), plus prononcée qu'à plus basse énergie et montrant une dépendance quadratique avec la longueur de parcours dans le milieu suggérant la prépondérance d'une perte d'énergie des partons par radiation de gluons. / High-energy nuclear physics aims at revealing the properties of Quark-Gluon Plasma (QGP),a new state of matter consisting of asymptotically free strong-interacting quarks and gluons. According to lattice QCD calculation, a transition from normal nuclear matter to a QGP is expected for energy densities exceeding the critical threshold of Ec ~ 1 GeV/fm3 (Tc ~ 150 - 200 MeV). Such extreme conditions of temperature and energy density are met in laboratory by smashing heavy nuclei at ultrarelativistic energies. The QGP thus created is however so short lived that it can only be resolved by self-generated hard probes, namely produced together with the medium but on a much shorter time scale. By subsequently interacting with the expanding QGP, these well calibrated probes carry valuable information about its transport properties.The purpose of this thesis is the measurement of jets as hard probes of the QGP along two complementary directions: by developping a new ALICE jet calorimeter trigger algorithm for LHC Run 2 to efficiently select events containing high energy electromagnetic showers and measuring charged jet production cross sections in Pb-Pb collisions at highest-ever centre of mass energy of 5.02TeV provided by the LHC. One of the basic challenges facing jet measurement in heavy-ion collisions consists in separating jets from the soft underlying event. The magnitude of the underlying event is quantified on an event-by-event basis and subtracted from the reconstructed jets. The remaining background fluctuations and detector effects are corrected at the event-ensemble level by an unfolding method. Furthermore, in order to minimise the fake jet contamination, a leading track jet transverse momentum cut-off of 5 GeV/c is applied.A strong suppression of jet production in the most central heavy-ion collisions is observed and quantified by the measurement of the nuclear modification factor, RAA. Such a suppression is interpreted as the result of parton energy loss in the QGP, the so-called jet quenching phenomenon. In this thesis, a phenomenological study with an original experimental observable of jet quenching (the energy shift) is presented. The key findings from this study are that the energy loss is constant in the measured jet transverse momentum range (up to ~ 100 GeV/c), of larger amplitude than at lower collision energy, and with a quadradic path-length dependence supporting the assumption that gluon radiation is the dominant mechanism at work.
Identifer | oai:union.ndltd.org:theses.fr/2018GREAY010 |
Date | 29 March 2018 |
Creators | Yokoyama, Hiroki |
Contributors | Grenoble Alpes, Université de Tsukuba, Furget, Christophe, Chujo, Tatsuya, Esumi, Shinichi, Guernane, Rachid |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds