In this parametric inverse problem, we consider a lossless dielectric slab excited by a transient plane wave. The scattered electric field from the slab is presented in the ray-optic and the complex-resonance forms. Our interest is to extract the complex-resonances of the system in order to identify the parameters that describe the scatterer. We review the signal processing procedure and the identification procedure employed to identity the poles of the system. We investigate the effect of noise on identification and determine the maximum amount of noise one can impose on the system. In addition, we study the effect of data truncation on our identification procedure. We also discuss the parameters that dictate the minimum record required for successful identification. Finally, we demonstrate some similarities in effect of noise and truncation on our identification process.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/277151 |
Date | January 1989 |
Creators | Tran, Huong Ngoc, 1966- |
Contributors | Dudley, Donald G. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Thesis-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.002 seconds