The titanium alloy, Ti-6Al-4V, is vastly studied and used in many applications because it has a transformation microstructure, which can be tailored for apt properties that are consistent up to 500°C. Compared to conventional steels, this alloy favours certain applications due to its high specific strength, hardenability, corrosion resistance, biocompatibility and weldability. Its weldability makes the alloy a good candidate for additive manufacturing (AM). Ti-6Al-4V parts are widely built by the AM process of electron beam melting (EBM). However, heat transfer remains crucial in EBM process. The high intensity localized, moving, electron beam heat source and the rapid self-cooling are critical, especially in thin parts/ sections. When thin sections are built by the EBM process, there will be microstructural variation in their build direction, which can lead to the variation of their mechanical properties. It is necessary to understand the microstructure and mechanical properties of thin sections when they are used as functional parts in various applications in aerospace, automotive, medical, etc. industries. The microstructure, tribological behaviour and mechanical properties of Ti-6Al-4V, as-built EBM thin plates were studied by means of various hardness, scratch and tensile testing. The hardness and scratch tests were performed on the thin plates to correlate the microstructural variation. In-situ micro tensile test was performed inside the scanning electron microscope (SEM), to see the sample’s deformation behaviour. Microstructural characterization revealed equiaxed grains in the transverse section and the longitudinal surface exhibited columnar grains elongated along the build direction. The size of the equiaxed grains are found to vary across the thickness of the plate. The indentation and scratch hardness also vary in correlation with the varying grain size across the plate’s thickness. The micro tensile results reveal that the tensile properties of the thin plate are comparable to that of its bulk Ti-6Al-4V counterpart.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:du-35321 |
Date | January 2019 |
Creators | Sanni, Onimisi Calistus |
Publisher | Högskolan Dalarna, Materialteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds