Return to search

Characterizing cavity containing materials using electron microscopy : A study of metal oxides, mesoporous crystals and porous material containing nanosized metal-particles

This thesis concerns the characterization of novel materials by utilizing electron microscopy techniques. The examined materials contain cavities with certain attributes that enables desired properties for applications such as gas separation, catalysis and fuel cells. The specimens concerned herein belong to the following groups of materials: Metal oxides in the Sb-W-Mo-O system; ordered mesoporous silicas and carbons; hollow spheres containing Au-nanoparticles; zeolite LTA incorporated with mesopores; metal organic frameworks doped with nickel. With scanning electron microscopy (SEM) and transmission electron microscopy (TEM) you get vast possibilities within the field of characterization. This thesis utilizes conventional electron microscopy techniques such as imaging, energy-dispersive spectroscopy and electron diffraction as well as reconstruction techniques, such as exit-wave reconstruction, electron tomography and electron crystallography. Furthermore, the sample preparation technique cross-section polishing has been used in conjunction with low voltage SEM studies. The scientific approach is to gain knowledge of nano-sized cavities in materials, in particular their shape, size and content. The cavities often have irregularities that originates from the synthesis procedure. In order to refine the synthesis and to understand the properties of the material it is required to carefully examine the local variations. Therefore average characterization techniques such as crystallography needs to be combined with local examination techniques such as tomography. However, some of the materials are troublesome to investigate since they to some extent bring limitations to or gets easily damaged by the applied characterization technique. For the development of novel materials it is essential to find means of overcoming also these obstacles. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Submitted.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-64164
Date January 2011
CreatorsKlingstedt, Miia
PublisherStockholms universitet, Institutionen för material- och miljökemi (MMK), Stockholm : Department of Materials and Environmental Chemistry (MMK), Stockholm University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds