Return to search

Fabrication of Atomic Force Microscope Probes Integrated with Microelectrodes for Micro Four-Point Porbe and SECM-AFM

This research is dedicated to develop novel batch fabrication procedures for two distinct AFM (Atomic Force Microscope) probes integrated with electrodes enabling electrical sample characterization and electrochemical sample surface profiling respectively. These AFM probes allow for highly accurate control of the probe positioning, low contact force and sample surface imaging with high lateral resolution.
As an electrical characterization tool, a nickel micro four-point probe integrated with solid nickel tips was developed. Low electrical resistance of the probe and contact resistance were achieved due to the solid nickel cantilever and tips. Low aspect ratio solid metal tips reduced contact resistance resulting in stable electrical measurement. Conductivity loss easily experienced while using metal coated AFM cantilevers was overcome by solid nickel tip integration to the electrically conductive AFM cantilevers. The fabrication method introduces selective conical nickel tip etching in silicon dioxide etching chambers.
A novel batch fabrication method for SECM-AFM (Scanning Electrochemical Microscope-Atomic Force Microscope) tip integrated with a ring electrode was developed as a tool for electrochemical imaging as well as topological imaging. The electroactive area at an exactly defined distance above the apex of the AFM tip is fabricated using an inverse silicon mold technique. The electrode at a deliberately chosen distance from the end of a scanning probe tip allowing electrochemical sample imaging separated from sample topology imaging. The ring electrode coated with polymer entrapping enzymes enabled the probe to detect ATP from living epithelial cells.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/10428
Date09 January 2006
CreatorsShin, Heungjoo
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format10537088 bytes, application/pdf

Page generated in 0.0018 seconds