Return to search

Health Analytics and Predictive Modeling: Four Essays on Health Informatics

There is a marked trend of using information technologies to improve healthcare. Among all the health IT, electronic health record (EHR) systems hold great promises as they modernize the paradigm and practice of care provision. However, empirical studies in the literature found mixed evidence on whether EHRs improve quality of care. I posit two explanations for the mixed evidence. First, most prior studies failed to account for system use and only focused on EHR purchase or adoption. Second, most existing EHR systems provide inadequate clinical decision support and hence, fail to reveal the full potential of digital health. In this dissertation I address two broad research questions: a) Does meaningful use of EHRs improve quality of care? and b) How do we advance clinical decision making through innovative computational techniques of healthcare analytics? To these ends, the dissertation comprises four essays. The first essay examines whether meaningful use of EHRs improve quality of care through a natural experiment. I found that meaningful use significantly improve quality of care, and this effect is greater in historically disadvantaged hospitals such as small, non-teaching, or rural hospitals. These empirical findings present salient practical and policy implications about the role of health IT. On the other hand, in the other three essays I work with real-world EHR data sets and propose healthcare analytics frameworks and methods to better utilize clinical text (Essay II), integrate clinical guidelines and EHR data for risk prediction (Essay III), and develop a principled approach for multifaceted risk profiling (Essay IV). Models, frameworks, and design principles proposed in these essays advance not only health IT research, but also more broadly contribute to business analytics, design science, and predictive modeling research.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/555987
Date January 2015
CreatorsLin, Yu-Kai
ContributorsChen, Hsinchun, Chen, Hsinchun, Goes, Paulo, Lin, Mingfeng
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.002 seconds