The classifier discussed in this thesis considers the path traversed by an email (instead of its content) and reputation of the relays, features inaccessible to spammers. Groups of spammers and individual behaviors of a spammer in a given domain were analyzed to yield association patterns, which were then used to identify similar spammers. Unsolicited and phishing emails were successfully isolated from legitimate emails, using analysis results. Spammers and phishers are also categorized into serial spammers/phishers, recent spammers/phishers, prospective spammers/phishers, and suspects. Legitimate emails and trusted domains are classified into socially close (family members, friends), socially distinct (strangers etc), and opt-outs (resolved false positives and false negatives). Overall this classifier resulted in far less false positives when compared to current filters like SpamAssassin, achieving a 98.65% precision, which is well comparable to the precisions achieved by SPF, DNSRBL blacklists.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc5402 |
Date | 12 1900 |
Creators | Palla, Srikanth |
Contributors | Dantu, Ram, Tate, Stephen R., Guturu, Parthasarathy |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Use restricted to UNT Community, Copyright, Palla, Srikanth, Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.0019 seconds