Return to search

High performance electrically conductive adhesives (ecas) for leadfree interconnects

Electrically conductive adhesives (ECAs) are one of the lead-free interconnect materials with the advantages of environmental friendliness, mild processing conditions, fewer processing steps, low stress on the substrates, and fine pitch interconnect capability. However, some challenging issues still exist for the currently available ECAs, including lower electrical conductivity, conductivity fatigue in reliability tests, limited current-carrying capability, poor impact strength, etc. The interfacial properties is one of the major considerations when resolving these challenges and developing high performance conductive adhesives.
Surface functionalization and interface modification are the major approaches used in this thesis. Fundamental understanding and analysis of the interaction between various types of interface modifiers and ECA materials and substrates are the key for the development of high performance ECA for lead-free interconnects. The results of this thesis provide the guideline for the enhancement of interfacial properties of metal-metal and metal-polymer interactions. Systematic investigation of various types of ECAs contributes to a better understanding of materials requirements for different applications, such as surface mount technology (SMT), flip chip applications, flat panel display modules with high resolution, etc. Improvement of the electrical, thermal and reliability of different ECAs make them a potentially ideal candidate for high power and fine pitch microelectronics packaging option.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/26518
Date02 November 2007
CreatorsLi, Yi
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0018 seconds