Return to search

The Revival of Electrochemistry: Electrochemical Deposition of Metals in Semiconductor Related Research

Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V versus Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which involves sticking the scotch tape on the sample, then peeling off the tape and observing if the copper film peels off or not. Characterization by scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicated that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics does not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small Cu nuclei are observable by SEM upon deposition at higher negative overpotentials, while only large nuclei (~ 1 micron or larger) are observed upon deposition at less negative potentials. Osmium metal has been successfully electrodeposited directly onto p-Si (100) from both Os3+ and Os4+ in both sulfuric and perchloric baths. This electrochemical deposition of osmium metal can provide sufficient amount of osmium which overcome ion beam implantation limitations. The deposited metal can undergo further processing to form osmium silicides, such as Os2Si3, which can be used as optical active materials. The higher osmium concentration results in large deposition currents and more negative peak potential due to larger transfer coefficient. No matter which supporting electrolyte is used, no stripping peak exists in this study. The oxidation ability of anion plays an important role in osmium electrodeposition because it will change the silicon substrate conductivity. In our case, perchloric acid oxidized silicon surface severely. Os4+ seems more favorable for reduction but has a stronger oxidization ability to lower the conductivity. The microscopic images verified osmium is deposited on silicon and forms cluster sizes of < 1 µm to > 10 µm. The Rutherford backscattering spectroscopy (RBS) data indicate osmium can diffuse into the silicon as far as 500 nm and the Si crystal structure is unchanged by the process. This means that the Si does not disassociate and migrate into deposited Os. Osmium is distributed randomly throughout the lattice interstitially. It appears field assisted diffusion can significantly drive the Os into Si (100). This finding is very valuable but needs further study.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc5574
Date08 1900
CreatorsWang, Chen
ContributorsGolden, Teresa D., Acree, William E. (William Eugene), D'Souza, Nandika A., Selby, Trent D.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsUse restricted to UNT Community (strictly enforced), Copyright, Wang, Chen, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0025 seconds