Return to search

Effects of structure and dynamics on the macroscopic physical properties of composite media.

Lo Chi-keung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 69-72). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- What is an electrorheological fluid? --- p.1 / Chapter 1.2 --- Overview of recent theoretical studies on ER fluids --- p.2 / Chapter 1.3 --- Objectives of the thesis --- p.4 / Chapter 2 --- Review of some established macroscopic concepts --- p.8 / Chapter 2.1 --- Local field and depolarization tensor --- p.8 / Chapter 2.2 --- Clausius-Mossotti equation --- p.10 / Chapter 3 --- Ewald-Kornfeld formulation and effects of geometric anisotropy on local field distribution --- p.12 / Chapter 3.1 --- The development of the Ewald-Kornfeld method --- p.12 / Chapter 3.2 --- General Ewald-Kornfeld Formalism - point dipole approximation --- p.13 / Chapter 3.3 --- Ewald-Kornfeld Formalism - tetragonal lattice of point dipoles --- p.14 / Chapter 3.4 --- Numerical Results --- p.16 / Chapter 3.5 --- Contact with macroscopic concepts --- p.18 / Chapter 3.5.1 --- Generalized Clausius-Mossotti equation --- p.18 / Chapter 3.5.2 --- Onsager reaction field --- p.19 / Chapter 3.6 --- Figures --- p.22 / Chapter 4 --- Field-induced structure transformation in ER solid --- p.24 / Chapter 4.1 --- Ewald-Kornfeld Formalism - body-centered tetragonal lattice --- p.25 / Chapter 4.2 --- Effects of structure transformation on the local field --- p.27 / Chapter 4.3 --- Structure transformation via rotating electric fields --- p.28 / Chapter 4.4 --- Competitions between FCC and HCP --- p.30 / Chapter 4.5 --- Figures --- p.31 / Chapter 5 --- Geometric anisotropy from distortive lattices: ferrodistortive and antidistortive systems --- p.34 / Chapter 5.1 --- Ferrodistortive lattice --- p.35 / Chapter 5.1.1 --- Sublattice interaction tensors --- p.36 / Chapter 5.1.2 --- Effective polarizability and Clausius-Mossotti equation --- p.37 / Chapter 5.2 --- Antidistortive lattice --- p.39 / Chapter 5.2.1 --- Sublattice interaction tensors --- p.40 / Chapter 5.2.2 --- Sublattice dipole moments --- p.41 / Chapter 5.2.3 --- Effective polarizability and polarization catastrophe --- p.43 / Chapter 5.2.4 --- Depolarization field --- p.44 / Chapter 5.3 --- Experimental realization - colloidal self-assembly --- p.45 / Chapter 5.4 --- Figures --- p.46 / Chapter 6 --- Discussion and conclusion --- p.52 / Chapter 6.1 --- Discussion on our work and possible future extension --- p.52 / Chapter 6.2 --- Conclusion --- p.54 / Chapter A --- Piezoelectric coefficients by Ewald-Kornfeld formulation --- p.57 / Chapter B --- Alternative formulation for Ewald-Kornfeld formulation by di- rect calculations of the dipole interaction tensor --- p.59 / Chapter C --- Ewald-multipole formulation --- p.63 / Chapter C.1 --- Multipole fields --- p.64 / Chapter C.2 --- Coupled dipole-quadrupole lattice --- p.66 / Bibliography --- p.69

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324012
Date January 2002
ContributorsLo, Chi-keung., Chinese University of Hong Kong Graduate School. Division of Physics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xi, 72 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0021 seconds