Return to search

Electrochemical Phase Formation of Ni and Ni-Fe Alloys in a Magnetic Field

The aim of this work was to investigate the effects that a magnetic field can induce during the electrodeposition of Ni and Ni-Fe alloys. Special regard was given to mass transport controlled effects. Magnetic field effects on the nucleation and growth of ferromagnetic layers and on the properties of electrodeposited layers (like grain size, texture, morphology or roughness) were investigated. The influence of a magnetic field on the magnetic properties of Ni layers and on the composition of Ni-Fe alloys was also studied. Nucleation and growth of thin Ni layers on gold electrodes under a superimposed magnetic field were analysed in-situ with the Electrochemical Quartz Crystal Microbalance technique. Three theoretical models were chosen for characterizing the Ni nucleation: Scharifker-Hills (SH), Scharifker-Mostany (SM) and Heerman-Tarallo (HT). The AFM images proved that more nuclei appear in a magnetic field in the case that the Lorentz force and the natural convection act in the same direction. From all the models, the HT model gave the best agreement with the AFM results. When the Lorentz force and the natural convection act in the same direction, an increase of the Ni partial current with the magnetic field was obtained. When they act in opposite directions, the Ni current was influenced just at the beginning of deposition (first 10 seconds). At longer times, the magnetic field has no effect on the Ni current. However, the total current (jNi+jHER) decreases with the magnetic field. In the absence of a macroscopic MHD convection, the Ni current decreases with the magnetic field the first 10-15 seconds of deposition. On longer time scales no influence of the magnetic field could be noticed for this configuration. When the magnetic field was applied perpendicular to the electric current, an increase of the hydrogen evolution reaction (HER) with the magnetic flux density was noticed. Hydrogen reduction is mass transport controlled. Therefore, the magnetic field will increase the limiting current of the HER. Optical microscopy images showed that the hydrogen bubbles were circular in the absence of the MHD convection and that they presented a tail when a Lorentz force was present. The direction of the tail depends on the net force induced by the natural and MHD convections. The interplay between the natural and MHD convections proved to be important during Ni-Fe alloy deposition, too. When the Lorentz force and the natural convection act in the same direction, an increase of the Fe content of the alloys with the magnetic field was observed. When the Lorentz force was perpendicular to the natural convection, no significant changes were observed in the composition of the layers. The alloy composition did not change with the magnetic field when the electric current was parallel to the magnetic field lines. Two surfactants were used in the case that Ni was electrodeposited from a sulfamate bath: SDS and sulfirol 8. The Ni layers obtained from a sulfamate bath with sulfirol 8 presented larger grains compared to the layers deposited from a bath free of surfactants. This increase of the grain size was attributed to the incorporation of the surfactant in the deposit. Coarser layers were obtained in a magnetic field (applied perpendicular to the electric current) when the electrodeposition was done from an electrolyte with surfactants. The number of grains increased with the magnetic field for the Ni layers electrodeposited from a bath free of surfactants and for a bath with SDS. As a consequence, the grain size decreased. In the case of the electrolyte with sulfirol 8, the number of grains decreased with the magnetic field, and their size increased. For the Ni-Fe alloys, which contained less than 10 at% Fe, the preferred crystalline orientation changes from (220), in the absence of a magnetic field, to (111), (when the magnetic field was applied perpendicular to the electric current). When the magnetic field lines were parallel to the electric current, both the (111) and (220) textures were preferred in almost the same proportion. As a general conclusion of this work it can be said that by choosing the right experimental condition, one can improve the morphology and the properties of the deposited layers by applying a magnetic field. At the same time, the mass transport processes can be influenced by a magnetic field.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1194000718076-46815
Date02 November 2007
CreatorsIspas, Adriana
ContributorsTechnische Universität Dresden, Chemie und Lebensmittelchemie, Professor Waldfried Plieth, PD Andreas Bund, Professor Ulrich Guth, Professor Frank Endres, Professor Waldfried Plieth
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0536 seconds