Return to search

Ortsaufgelöste Charakterisierung von Entmischungsphänomenen in Ga<sub>x</sub>In<sub>1-x</sub>As<sub>y</sub>P<sub>1-y</sub>-Halbleiter-Heteroschichten im Raster-Transmissionselektronenmikroskop - Spatial resolved characterisation of decomposition in Ga<sub>x</sub>In<sub>1-x</sub>As<sub>y</sub>P<sub>1-y</sub>-semiconductor hetero structures by scanning transmission electron microscopy

The use of the quaternary semiconductor alloy Ga<sub>x</sub>In<sub>1-x</sub>As<sub>y</sub>P<sub>1-y</sub> for the development of new electronic, optoelectronic or high speed microwave devices is of great technological interest e.g. in telecommunication. Under certain manufacturing conditions unwanted variations in the chemical composition of these materials can occur, which can be attributed to the existence of a miscibility gap. These decomposition phenomena occur within the nanometer and subnanometer scale. Therefore it is necessary to use characterisation methods of high sensitivity and at the same time highest spatial resolution to investigate independently key parameters such as layer thickness, chemical composition or crystalline structure. The Scanning Transmission Electron Microscope (STEM) is suited for such material analyses since it combines illustrating and analytic characterisation methods together with high spatial resolution. The goal of this work was a comprehensive qualitative and quantitativ e investigation of decomposition in GaxIn1-xAsyP1-y using characterisation techniques like bright-field and Z-contrast imaging as well as electron energy loss spectroscopy (EELS) and convergent beam electron diffraction (CBED), performed in a STEM. For the first time the chemical decomposition process were quantified on the nanometer scale. The course of the decomposition and the predicted expansion of the miscibility gap could be acknowledged in the experiment. Additionally it was shown that by optimising growth parameters (e.g. pressure) of strain compensated superlattices the decomposition process could be inhibited or even stopped. At the same time for the improvement of the evaluation of high resolution Z-contrast images the maximum entropy method (MEM) was applied. Due to the use of the MEM the high resolution Z-contrast images permits the investigation of defect structures and for the first time using a STEM at 100 keV the dumb bells of GaSb was resolved in maximum entropy reconstruction

Identiferoai:union.ndltd.org:DUETT/oai:DUETT:duett-05222002-093828
Date24 May 2002
CreatorsMendorf, Christina
ContributorsProf. Dr. rer.nat. Klaus Heime, RWTH Aachen, Prof. em. Dr.-Ing. Erich Kubalek
PublisherGerhard-Mercator-Universitaet Duisburg
Source SetsDissertations and other Documents of the Gerhard-Mercator-University Duisburg
LanguageGerman
Detected LanguageEnglish
Typetext
Formattext/html, application/pdf
Sourcehttp://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-05222002-093828/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. Hiermit erteile ich der Universitaet Duisburg das nicht-ausschliessliche Recht unter den unten angegebenen Bedingungen, meine Dissertation, Staatsexamens- oder Diplomarbeit, meinen Forschungs- oder Projektbericht zu veroeffentlichen und zu archivieren. Ich behalte das Urheberrecht und das Recht das Dokument zu veroeffentlichen und in anderen Arbeiten weiterzuverwenden.

Page generated in 0.0022 seconds