Return to search

Trumpųjų bangų sklidimo modelis daugiaprocesorinėje aplinkoje / Development of the model of short wave propagation by using multi-processor environment

Tampriosios bangos (arba akustinės ar bet kokios kitos bangos) sklidimo tyrimai yra svarbūs tokiose srityse kaip seismologija arba neardantis medžiagos testavimas. Tamprioje
srityje šis reiškinys aprašomas tampriosios bangos dinamine diferencialine lygtimi. Tačiau šios lygties sprendimas naudojant tokius skaitinius metodus kaip baigtiniai elementai reikalauja sritį padalinti į milijonus elementų. Naujų skaičiavimo technologijų kaip bendros paskirties grafiniai procesoriai (GPU) atsiradimas skaičiavimų laiką leidžia ženkliai sumažinti, tačiau algoritmai turi būti specialiai pritaikomi.
Todėl šiame darbe koncentruojamasi į trumpos tampriosios bangos baigtinių elementų modelio sukūrimą ir algoritmų tobulinimą naudojant GPU bei pagrindinį procesorių (CPU). Lygties integravimui buvo pasirinktas centrinių skirtumų metodo (CSM) schema. Ši integravimo schema buvo modifikuota taip, kad būtų galima išskirti tris integravimo algoritmo etapus: išorinės jėgos įvertinimas, elementų deformacijos sąlygotų jėgų įvertinimas bei magų poslinkių, greičių ir jėgų perskaičiavimas. Remiantis strategija pasiūlyta [1] šaltinyje, buvo sukurti lygiagretūs algoritmai 2 ir 3 etapo skaičiavimams atlikti. Toliau antrojo etapo algoritmas buvo optimizuotas 2 kartus. Pirmiausia buvo atsisakyta elementų mazgų indeksų masyvo: tai skaičiavimo laiką sumažino 20%. Po to algoritmas buvo modifikuotas taip, kad elementus būtų galima apdoroti blokais kaip siūloma [12] ir [22] šaltiniuose. Skaičiavimo laiką tai leido... [toliau žr. visą tekstą] / Understanding elastic wave (or acoustic or any other type of wave for that matter) phenomenon is of great importance in areas such as seismology or non destructive testing (NDT). This phenomenon in case of elastic environment is described by dynamic elastic differential equations. However, computational models like finite element method consumes huge amounts of computational power as even for relatively small problems require dividing area of interest into millions of elements. In the advent of general purpose GPU computing new opportunities for speeding up computations as well as challenges for developing high performance algorithms suited for new kinds of processors arise.
Therefore this work concentrates on developing a finite element based short elastic wave propagation model on GPU as well as CPU. Central difference explicit wave equation integration scheme has been chosen. It then was slightly modified in order to separate integration algorithm into three phases: external force evaluation, evaluation of forces that occur due to stresses of elements and recalculation of node shifts, speeds and forces. A parallel algorithm has been developed for executing third and seconds phases, based on strategy suggested in [1]. Then the algorithm of the second phase has been optimized 2 times: at first the array of element node indices was eliminated yielding 20% performance boost, then modifications have been made to process elements in blocks by using strategy described at [22]... [to full text]

Identiferoai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2012~D_20131104_112207-16216
Date04 November 2013
CreatorsMickus, Mykolas
ContributorsBarauskas, Rimantas, Mažeika, Liudas, Kaunas University of Technology
PublisherLithuanian Academic Libraries Network (LABT), Kaunas University of Technology
Source SetsLithuanian ETD submission system
LanguageLithuanian
Detected LanguageUnknown
TypeMaster thesis
Formatapplication/pdf
Sourcehttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2012~D_20131104_112207-16216
RightsUnrestricted

Page generated in 0.0025 seconds