The purpose of this study, based on the third year of a three-year research study, was to examine Grade 6 students’ previously developed abilities to integrate their understanding of geometric growing patterns with graphic representations as a means of further developing their conception of linear relationships. In addition, I included an investigation to determine whether the students’ understanding of linear relationships of positive values could be extended to support their understanding of negative numbers. The theoretical approach to the microgenetic analyses I conducted is based on Noss & Hoyles’ notion of situated abstractions, which can be defined as the development of successive approximation of formal mathematical knowledge in individuals. I also looked to Roschelle’s work on collaborative conceptual change, which allowed me to examine and document successive mathematical abstractions at a whole-class level. I documented in detail the development of ten grade 6 students’ understanding of linear relationships as they engaged in seven experimental lessons. The results show that these learners were all able to grasp the connections among multiple representations of linear relationships. The students were also able to use their grasp of pattern sequences, graphs and tables of value to work out how to operate with negative numbers, both as the multiplier and as the additive constant. As a contribution to research methodology, the use of two analytical frameworks provides a model of how frameworks can be used to make sense of data and in particular to pinpoint the interplay between individual and collective actions and understanding.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/26347 |
Date | 23 February 2011 |
Creators | Beatty, Ruth |
Contributors | Moss, Joan |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.002 seconds