Cette thèse présente des contributions à la modélisation multivariée et spatiale des valeurs extrêmes. Au travers d'une extension de la représentation par coordonnées pseudo-polaires, représentation très utilisée en théorie des valeurs extrêmes, une approche unifiée et générale pour la modélisation en valeurs extrêmes est proposée. La variable radiale de ces coordonnées est donnée par une fonction non négative et homogène dite fonction d'agrégation permettant d'agréger un vecteur dans un scalaire. La loi de la variable d'angle est caractérisée par une mesure dite angulaire ou spectrale. Nous définissons les lois radiales de Pareto et une version inversée de ces lois, toutes deux motivées dans le cadre de la variation régulière multivariée. Cette classe de modèles est assez souple et permet de modéliser les valeurs extrêmes de vecteurs aléatoires dont la variable agrégée est à décroissance de type Pareto ou Pareto inversé. Dans le cadre spatial, nous mettons l'accent sur les lois bivariées à l'instar des méthodes couramment utilisées. Des approches inférentielles originales sont développées, fondées sur un nouvel outil de représentation appelé spectrogramme. Le spectrogramme est constitué des mesures spectrales caractérisant le comportement extrémalbivarié. Enfin, la construction dite spectrale du processus limite max-stable des processus elliptiques, à savoir le processus t-extrémal, est présentée. Par ailleurs, nous énonçons des méthodesd'inférence et explorons des méthodes de simulation des processus de type max-stable et de type Pareto. L'intérêt pratique des modèles et méthodes proposés est illustré au travers d'applications à des données environnementales et financières. / This PhD thesis presents contributions to the modelling of multivariate andspatial extreme values. Using an extension of commonly used pseudo-polar representations inextreme value theory, we propose a general unifying approachto modelling of extreme value dependence. The radial variable of such coordinates is obtained from applying a nonnegative and homogeneous function, called aggregation function, allowing us to aggregate a vector into a scalar value. The distribution of the angle component is characterized by a so-called angular or spectral measure. We define radial Pareto distribution and an inverted version of thesedistributions, both motivated within the framework of multivariateregular variation. This flexible class of models allows for modelling of extreme valuesin random vectors whose aggregated variable shows tail decay of thePareto or inverted Pareto type. For the purpose of spatial extreme value analysis, we follow standard methodology in geostatistics of extremes and put the focus on bivariatedistributions. Inferentialapproaches are developed based on the notion of a spectrogram,a tool composed of thespectral measures characterizing bivariate extreme value behavior. Finally, the so-called spectral construction of the max-stable limit processobtained from elliptical processes, known as extremal-t process, ispresented. We discuss inference and explore simulation methods for the max-stableprocess and the corresponding Pareto process. The utility of the proposed models and methods is illustrated throughapplications to environmental and financial data.
Identifer | oai:union.ndltd.org:theses.fr/2013MON20125 |
Date | 30 October 2013 |
Creators | Opitz, Thomas |
Contributors | Montpellier 2, Bacro, Jean-Noël, Ribereau, Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds