Return to search

Bias in mixtures of normal distributions and joint modeling of longitudinal and time-to-event data with monotonic change curves

Estimating parameters in a mixture of normal distributions dates back to the 19th century when Pearson originally considered data of crabs from the Bay of Naples. Since then, many real world applications of mixtures have led to various proposed methods for studying similar problems. Among them, maximum likelihood estimation (MLE) and the continuous empirical characteristic function (CECF) methods have drawn the most attention. However, the performance of these competing estimation methods has not been thoroughly studied in the literature and conclusions have not been consistent in published research. In this article, we review this classical problem with a focus on estimation bias. An extensive simulation study is conducted to compare the estimation bias between the MLE and CECF methods over a wide range of disparity values. We use the overlapping coefficient (OVL) to measure the amount of disparity, and provide a practical guideline for estimation quality in mixtures of normal distributions. Application to an ongoing multi-site Huntington disease study is illustrated for ascertaining cognitive biomarkers of disease progression.
We also study joint modeling of longitudinal and time-to-event data and discuss pattern-mixture and selection models, but focus on shared parameter models, which utilize unobserved random effects in order to "join" a marginal longitudinal data model and marginal survival model in order to assess an internal time-dependent covariate's effect on time-to-event. The marginal models used in the analysis are the Cox Proportional Hazards model and the Linear Mixed model, and both of these models are covered in some detail before defining joints models and describing the estimation process. Joint modeling provides a modeling framework which accounts for correlation between the longitudinal data and the time-to-event data, while also accounting for measurement error in the longitudinal process, which previous methods failed to do. Since it has been shown that bias is incurred, and this bias is proportional to the amount of measurement error, utilizing a joint modeling approach is preferred. Our setting is also complicated by monotone degeneration of the internal covariate considered, and so a joint model which utilizes monotone B-Splines to recover the longitudinal trajectory and a Cox Proportional Hazards (CPH) model for the time-to-event data is proposed. The monotonicity constraints are satisfied via the Projected Newton Raphson Algorithm as described by Cheng et al., 2012, with the baseline hazard profiled out of the $Q$ function in each M-step of the Expectation Maximization (EM) algorithm used for optimizing the observed likelihood. This method is applied to assess Total Motor Score's (TMS) ability to predict Huntington Disease motor diagnosis in the Biological Predictors of Huntington's Disease study (PREDICT-HD) data.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-5737
Date01 May 2015
CreatorsLourens, Spencer
ContributorsZhang, Ying, Long, Jeffrey D., 1964-
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2015 Spencer G. Lourens

Page generated in 0.0019 seconds