L’extraction de la sémantique d’une image est un processus qui nécessite une analyse profonde du contenu de l’image. Elle se réfère à leur interprétation à partir d’un point de vuehumain. Dans ce dernier cas, la sémantique d’une image pourrait être générique (par exemple un véhicule) ou spécifique (par exemple une bicyclette). Elle consiste à extraire une sémantique simple ou multiple de l’image afin de faciliter sa récupération. Ces objectifs indiquent clairement que l’extraction de la sémantique n’est pas un nouveau domaine de recherche. Cette thèse traite d’une approche d’annotation collaborative et de recherche d’images baséesur les sémantiques émergentes. Il aborde d’une part, la façon dont les annotateurs pourraient décrire et représenter le contenu des images en se basant sur les informations visuelles, et d’autre part comment la recherche des images pourrait être considérablement améliorée grâce aux récentes techniques, notamment le clustering et la recommandation. Pour atteindre ces objectifs, l’exploitation des outils de description implicite du contenu des images, des interactions des annotateurs qui décrivent la sémantique des images et celles des utilisateurs qui utilisent la sémantique produite pour rechercher les images seraient indispensables.Dans cette thèse, nous nous sommes penchés vers les outils duWeb Sémantique, notamment les ontologies pour décrire les images de façon structurée. L’ontologie permet de représenter les objets présents dans une image ainsi que les relations entre ces objets (les scènes d’image). Autrement dit, elle permet de représenter de façon formelle les différents types d’objets et leurs relations. L’ontologie code la structure relationnelle des concepts que l’on peut utiliser pour décrire et raisonner. Cela la rend éminemment adaptée à de nombreux problèmes comme la description sémantique des images qui nécessite une connaissance préalable et une capacité descriptive et normative.La contribution de cette thèse est focalisée sur trois points essentiels : La représentationsémantique, l’annotation sémantique collaborative et la recherche sémantique des images.La représentation sémantique permet de proposer un outil capable de représenter la sémantique des images. Pour capturer la sémantique des images, nous avons proposé une ontologie d’application dérivée d’une ontologie générique.L’annotation sémantique collaborative que nous proposons consiste à faire émerger la sémantique des images à partir des sémantiques proposées par une communauté d’annotateurs.La recherche sémantique permet de rechercher les images avec les sémantiques fournies par l’annotation sémantique collaborative. Elle est basée sur deux techniques : le clustering et la recommandation. Le clustering permet de regrouper les images similaires à la requête d’utilisateur et la recommandation a pour objectif de proposer des sémantiques aux utilisateurs en se basant sur leurs profils statiques et dynamiques. Elle est composée de trois étapes à savoir : la formation de la communauté des utilisateurs, l’acquisition des profils d’utilisateurs et la classification des profils d’utilisateurs avec l’algèbre de Galois. Des expérimentations ont été menées pour valider les différentes approches proposées dans ce travail. / The extraction of images semantic is a process that requires deep analysis of the image content. It refers to their interpretation from a human point of view. In this lastest case, the image semantic may be generic (e.g., a vehicle) or specific (e.g., a bicycle). It consists in extracting single or multiple images semantic in order to facilitate its retrieval. These objectives clearly show that the extraction of semantic is not a new research field. This thesis deals with the semantic collaborative annotation of images and their retrieval. Firstly, it discusses how annotators could describe and represent images content based on visual information, and secondly how images retrieval could be greatly improved thank to latest techniques, such as clustering and recommendation. To achieve these purposes, the use of implicit image content description tools, interactions of annotators that describe the semantics of images and those of users that use generated semantics to retrieve the images, would be essential. In this thesis, we focus our research on the use of Semantic Web tools, in particular ontologies to produce structured descriptions of images. Ontology is used to represent image objects and the relationships between these objects. In other words, it allows to formally represent the different types of objects and their relationships. Ontology encodes the relational structure of concepts that can be used to describe and reason. This makes them eminently adapted to many problems such as semantic description of images that requires prior knowledge as well as descriptive and normative capacity. The contribution of this thesis is focused on three main points : semantic representation, collaborative semantic annotation and semantic retrieval of images.Semantic representation allows to offer a tool for the capturing semantics of images. To capture the semantics of images, we propose an application ontology derived from a generic ontology. Collaborative semantic annotation that we define, provides emergent semantics through the fusion of semantics proposed by the annotators.Semantic retrieval allows to look for images with semantics provided by collaborative semantic annotation. It is based on clustering and recommendation. Clustering is used to group similar images corresponding to the user’s query and recommendation aims to propose semantics to users based on their profiles. It consists of three steps : creation of users community, acquiring of user profiles and classification of user profiles with Galois algebra. Experiments were conducted to validate the approaches proposed in this work.
Identifer | oai:union.ndltd.org:theses.fr/2015DIJOS019 |
Date | 05 June 2015 |
Creators | Zomahoun, Damien Esse |
Contributors | Dijon, Yétongnon, Kokou |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds