Return to search

Etude expérimentale des oscillations de plasma dans des transistors à effet de champ excitées optiquement / Experimental study of plasma oscillations in field effect transistors optically excited

Le domaine térahertz est une région du spectre électromagnétique comprise entre 300 GHz et 30 THz. Elle représente un fort intérêt pour la communauté scientifique pour plusieurs raisons : la radiation térahertz possède en effet un potentiel de télécommunication à très haut débit important, elle constitue un moyen d'investigation efficace et non destructif pour différents types d'éléments et composés, minéraux ou organiques et elle représente une importance cruciale pour les astronomes qui estime que 98 % des photons émis par le Big Bang se trouvent dans ce domaine de fréquences. Malheureusement, à l'heure actuelle, le manque de sources et détecteurs facilement exploitables, intégrables et fonctionnant à température ambiante ne permet pas l'utilisation du domaine térahertz à grande échelle. Un nouveau phénomène physique exploitable tel que les oscillations d'ondes de plasma dans les nanotransistors représente une piste prometteuse pour combler ce manque. Ce phénomène étudié de manière analytique dans le milieu des années 1990, a donné lieu à un modèle qui reste très loin de la réalité physique et des conditions expérimentales. Des expériences récentes effectuées à température ambiante ont permis de montrer la possibilité d'exciter des oscillations d'ondes de plasma à l'intérieur d'un canal de HEMT par une radiation THz directe. Ce travail se propose de réaliser une étude systématique des transistors sous excitation effectuée par battement optique térahertz. Ceci afin de mieux comprendre et exploiter les ondes de plasma dans les nanotransistors à effet de champ. Cela nous a conduit à étudier l'effet des paramètres géométriques et physiques du transistor comme les longueurs de grille, les longueurs des cap-layers, la tension de drain et la tension de grille. En parallèle à ce travail expérimental un modèle hydrodynamique pseudo-2D était utilisé pour confronter l'ensemble des résultats pour une meilleure compréhension des phénomènes physiques. Ce travail a permis d'accéder à une compréhension et une description fines du phénomène d'excitation des ondes de plasma. ceci a permis d'initier l'étude de nouveaux dispositifs tel que un émetteur à base d'un transistor HEMT assisté par battement optique et la réalisation d'un mélangeur hétérodyne d'une radiation térahertz transposé par un battement optique en une fréquence intermédiaire plus basse et facilement exploitable. / The terahertz range covers the electromagnetic spectrum for frequencies between 300 GHz and 30 THz. It presents a strong interest in the scientific community for several reasons: Terahertz carriers allow for high-speed free-space telecommunications; Terahertz radiations can be used for efficient and non-destructive characterization of various components and materials (minerals or organic); Terahertz detection is of major interest for astronomers as 98 % of photons emitted since the Big Bang are in this frequency domain. Unfortunately, the lack of adequate sources and detectors, i.e. room-temperature-operating, low-cost and integrated, strongly limits the use of terahertz radiations for the above-mentioned applications. A new physical phenomenon called plasma waves in nanotransistors is very promising for the realization of terahertz sources and detectors. This new phenomenon was proposed in the mid-1990s on the basis of analytical calculations, although the model was rather simplified and it did not take into account the actual experimental conditions. Recent experiments performed at low and room temperature demonstrated the feasibility to excite plasma waves in the channel of a high-electron-mobility transistor (HEMT), using a THz-radiation excitation.This work presents a different way to excite this plasma wave by using an optical beating excitation. A systematic study of nanometric transistors under optical excitation to better understand and exploit plasma waves is carried on. The effects of geometrical parameters such as transistor gate length or cap-layer length are investigated. The dependence of the plasma waves on different electrical parameters such as drain voltage and gate voltage is also presented. Along with this experimental work, a pseudo-two-dimensional hydrodynamic simulator was developed to analyze the physical processes in the transistors on a more rigorous theoretical basis than the simplified analytical model. As a result of this joint experimental and theoretical investigation, we achieved a better understanding and an accurate description of the complex mechanism of plasma waves excited in field-effect transistors. Finally, we propose new structures to be used, from one hand, as a monochromatic terahertz source based on a HEMT excited by an optical beating, and,from the other hand, a spectrally-resolved heterodyne detector based on the mixing between the terahertz radiation to be analyzed and an optical beating used as a tunable local oscillator.

Identiferoai:union.ndltd.org:theses.fr/2011MON20189
Date25 November 2011
CreatorsNouvel, Philippe
ContributorsMontpellier 2, Varani, Luca
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds