Diplomová práca sa zaoberá rozpoznávaním emócií z textu v sociálnych sieťach. Práca popisuje súčasné metódy extrakcie príznakov, používané lexikóny, korpusy a klasifikátory. Emócie boli rozpoznávané na základe klasifikátoru, netrénovaného na anotovaných dátach z mikroblogovacej siete Twitter. Výhodou použitia služby Twitter, bolo geografické vymedzenie dát, ktoré umožňuje sledovanie zmien emócií populácie v rôznych mestách. Prvým prístupom klasifikácie bolo vytvorenie Baseline algoritmu, ktorý používal jednoduchý lexikón. Pre zlepšenie klasifikácie sme v druhom bode použili komplexnejší SVM klasifikátor. SVM klasifikátory, extrakcie a selekcie príznakov boli použité z dostupnej Python knižnice Scikit. Dáta pre natrénovanie klasifikátoru boli zhromažďované z oblasti USA, a to s pomocou vytvorenej aplikácie. Klasifikátor bol natrénovaný na dátach, označených pri ich zhromažďovaní - bez manuálnej anotácie. Boli použité dve rôzne implantácie SVM klasifikátorov. Výsledné klasifikované emócie, v rôznych mestách a dňoch, boli zobrazené v podobe farebných značiek na mape.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:220399 |
Date | January 2015 |
Creators | Križan, Viliam |
Contributors | Burget, Radim, Atassi, Hicham |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds