Au cours des dernières années, des changements importants dans le domaine des assurances et des finances attirent de plus en plus l’attention sur la nécessité d’élaborer un cadre normalisé pour la mesure des risques. Récemment, il y a eu un intérêt croissant de la part des experts en assurance sur l’utilisation de l’espérance conditionnelle des pertes (CTE) parce qu’elle partage des propriétés considérées comme souhaitables et applicables dans diverses situations. En particulier, il répond aux exigences d’une mesure de risque “cohérente”, selon Artzner [2]. Cette thèse représente des contributions à l’inférence statistique en développant des outils, basés sur la convergence des intégrales fonctionnelles, pour l’estimation de la CTE qui présentent un intérêt considérable pour la science actuarielle. Tout d’abord, nous développons un outil permettant l’estimation de la moyenne conditionnelle E[X|X > x], ensuite nous construisons des estimateurs de la CTE, développons la théorie asymptotique nécessaire pour ces estimateurs, puis utilisons la théorie pour construire des intervalles de confiance. Pour la première fois, l’approche de bootstrap non paramétrique est explorée dans cette thèse en développant des nouveaux résultats applicables à la valeur à risque (VaR) et à la CTE. Des études de simulation illustrent la performance de la technique de bootstrap.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/37594 |
Date | 07 May 2018 |
Creators | Loukrati, Hicham |
Contributors | Kulik, Rafal, Ivanoff, B. Gail |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | French |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0021 seconds