Return to search

Employee Churn Prediction in Healthcare Industry using Supervised Machine Learning / Förutsägelse av Personalavgång inom Sjukvården med hjälp av Övervakad Maskininlärning

Given that employees are one of the most valuable assets of any organization, losing an employee has a detrimental impact on several aspects of business activities. Loss of competence, deteriorated productivity and increased hiring costs are just a small fraction of the consequences associated with high employee churn. To deal with this issue, organizations within many industries rely on machine learning and predictive analytics to model, predict and understand the cause of employee churn so that appropriate proactive retention strategies can be applied. However, up to this date, the problem of excessive churn prevalent in the healthcare industry has not been addressed. To fill this research gap, this study investigates the applicability of a machine learning-based employee churn prediction model for a Swedish healthcare organization. We start by extracting relevant features from real employee data followed by a comprehensive feature analysis using Recursive Feature Elimination (RFE) method. A wide range of prediction models including traditional classifiers, such as Random Forest, Support Vector Machine and Logistic Regression are then implemented. In addition, we explore the performance of ensemble machine learning model, XGBoost and neural networks, specifically Artificial Neural Network (ANN). The results of this study show superiority of an SVM model with a recall of 94.8% and a ROC-AUC accuracy of 91.1%. Additionally, to understand and identify the main churn contributors, model-agnostic interpretability methods are examined and applied on top of the predictions. The analysis has shown that wellness contribution, employment rate and number of vacations days as well as number of sick day are strong indicators of churn among healthcare employees. / Det sägs ofta att anställda är en verksamhets mest värdefulla tillgång. Att förlora en anställd har därmed ofta skadlig inverkan på flera aspekter av affärsverksamheter. Därtill hör bland annat kompetensförlust, försämrad produktivitet samt ökade anställningskostnader. Dessa täcker endast en bråkdel av konsekvenserna förknippade med en för hög personalomsättningshastighet. För att hantera och förstå hög personalomsättning har många verksamheter och organisationer börjat använda sig av maskininlärning och statistisk analys där de bland annat analyserar beteendedata i syfte att förutsäga personalomsättning samt för att proaktivt skapa en bättre arbetsmiljö där anställda väljer att stanna kvar. Trots att sjukvården är en bransch som präglas av hög personalomsättning finns det i dagsläget inga studier som adresserar detta uppenbara problem med utgångspunkt i maskininlärning. Denna studien undersöker tillämpbarheten av maskininlärningsmodeller för att modellera och förutsäga personalomsättning i en svensk sjukvårdsorganisation. Med utgångspunkt i relevanta variabler från faktisk data på anställda tillämpar vi Recursive Feature Elimination (RFE) som den primära analysmetoden. I nästa steg tillämpar vi flertalet prediktionsmodeller inklusive traditionella klassificerare såsom Random Forest, Support Vector Machine och Logistic Regression. Denna studien utvärderar också hur pass relevanta Neural Networks eller mer specifikt Artificial Neural Networks (ANN) är i syfte att förutse personalomsättning. Slutligen utvärderar vi precisionen av en sammansatt maskininlärningsmodell, Extreme Gradient Boost. Studiens resultat påvisar att SVM är en överlägsen model med 94.8% noggranhet. Resultaten från studien möjliggör även identifiering av variabler som mest bidrar till personalomsättning. Vår analys påvisar att variablerna relaterade till avhopp är friskvårdbidrag, sysselsättningsgrad, antal semesterdagar samt sjuktid är starkt korrelerade med personalomsättning i sjukvården.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321536
Date January 2022
CreatorsGentek, Anna
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS), Stockholm : KTH Royal Institute of Technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:726

Page generated in 0.0383 seconds