Les emballages alimentaires et pharmaceutiques doivent de nos jours répondre à de nombreux critères : ils doivent non seulement préserver le produit emballé, mais également être inoffensifs, économes en énergie et jetables. Les polymères barrières ont permis de répondre à ces besoins, en offrant des alternatives à des matériaux plus demandeurs en énergie et plus lourds tels que le verre ou les métaux, tout en conservant une faible perméabilité à l’eau et/ou à l’oxygène. Parmi la grande variété de polymères barrières existants, les copolymères du poly(chlorure de vinylidène) (PVDC) offrent une protection plus complète aux contaminants extérieurs, grâce à leurs faibles perméabilités à l’eau et à l’oxygène. Cependant, les films de PVDC sont sujets à des processus de dégradation ayant lieu lors du thermoformage ou sous exposition aux rayonnements UV. Ces effets sont encore plus prononcés dans le cas de films obtenus à partir de latex, dû à des quantités plus importantes d’additifs qui accentueraient les phénomènes de dégradation du polymère. Par conséquent, la synthèse de latex à base de PVDC pour des applications en tant que films barrières aux stabilités thermique et UV améliorées revêt un grand intérêt. Des latex composites à base de PVDC ont tout d’abord été synthétisés en présence de latex semences à fonctionnalité époxy en vue d’améliorer la stabilité thermique du polymère. En effet, les groupements époxy jouent le rôle de stabilisants thermiques en piégeant le chlorure d’hydrogène, dégagé lors du thermoformage et présentant un effet catalytique indirect sur le processus de dégradation du polymère. Dans une première étape, des latex semences à fonctionnalité époxy ont été synthétisés par copolymérisation en émulsion du methacrylate de glycidyle (GMA) et du methacrylate de butyle (BMA). Lors d’une seconde étape, la copolymérisation en émulsion ensemencée du chlorure de vinylidene et de l’acrylate de méthyle a été effectuée en présence des semences de poly(GMA-co-BMA). Des analyses thermogravimétriques effectuées sur les échantillons composites ont mis en évidence le rôle de stabilisant thermique joué par les fonctions époxy. La seconde partie du projet concerne la synthèse de latex hybrides à base d’oxyde de cérium (CeO2) afin d’améliorer la résistance du PVDC aux rayonnements UV. Les nanoparticules d’oxyde de cérium sont en effet attrayantes en tant que stabilisants UV en raison de leur haute absorption des rayonnements UV et d'une faible activité photocatalytique. Cependant, étant donné l’incompatibilité intrinsèque entre les phases inorganique et organique, la synthèse de latex hybrides requiert souvent une étape préliminaire de modification de surface des particules minérales. Le greffage d’alcoxysilanes a d’abord été entrepris sur des particules d’oxyde de cérium afin d’encourager la réaction de polymérisation à leur surface. Des observations par cryo-Microscopie Electronique à Transmission (cryo-MET) effectuées sur les latex hybrides obtenus par cette stratégie ont montré que le greffage d’alcoxysilanes ne permettait pas d’améliorer efficacement la compatibilité entre les phases inorganique et polymère. Enfin, des macro-agents RAFT amphiphatiques ont été employés comme agents comptabilisant réactifs afin de promouvoir la réaction de polymérisation à la surface de l’oxyde de cérium. Des oligomères RAFT ont été obtenus par des réactions de co- ou terpolymérisation en présence d’un agent de contrôle RAFT. Après caractérisation de l’adsorption des macro-agents RAFT à la surface de l’oxyde de cérium, les particules modifiées ont été utilisées dans des réactions de polymérisation en émulsion. Les observations des latex hybrides par cryo-MET ont confirmé l’efficacité de la méthode pour l’obtention de structures hybrides. Cette stratégie semble ainsi la plus prometteuse pour la synthèse de latex hybrides CeO2/PVDC pour des applications en tant que films barrières présentant une stabilité UV améliorée. / Food and pharmaceutical packages should nowadays fulfill a wide range of requirements : not only should they preserve the packed products from external polluting agents, but they must also be innocuous, more energy-efficient and disposable. Barrier polymers have enabled to meet these criteria, by offering alternatives to more energy-consuming and heavier materials like glass or metals, while maintaining a low permeability to water and/or oxygen. Among the large variety of barrier polymers, poly(vinylidene chloride) (PVDC) copolymers provide a more complete protection to external contaminants, due to their extremely low permeabilities towards water and oxygen. Nonetheless, PVDC films still suffer from limitations as far as their thermal and UV stabilities are concerned. This effect is even more pronounced in the case of films obtained from latexes, due to the presence of higher amounts of additives that could take part in the polymer degradation. Therefore, the synthesis of PVDC-based latexes for use as waterborne barrier films with improved thermal and UV stabilities are of great importance. PVDC-based composite latexes were first synthesized from epoxy-functionalized seed latexes in order to enhance the polymer thermal stability. Given that hydrogen chloride displays an indirect catalytic effect on the polymer degradation, epoxy groups were indeed expected to act as thermal stabilizers by scavenging the HCl released by the polymer under thermal stress. In a first step, epoxy-functionalized seed latexes were synthesized via the emulsion copolymerization of glycidyl methacrylate (GMA) and butyl methacrylate (BMA). In a second step, the seeded emulsion copolymerization of vinylidene chloride and methyl acrylate was carried out in the presence of poly(GMA-co-BMA) seed latexes. Thermogravimetric analyses carried out on the resulting composite samples evidenced the thermal stabilization provided by epoxy groups. The second part of the project focused on the synthesis of cerium oxide-based hybrid latexes so as to improve the stability of PVDC to UV radiation. Cerium oxide (CeO2) nanoparticles are indeed very attractive as UV-stabilizers due to their high absorption of radiation in the UV range and a low photocatalytic activity. However, due to the intrinsic incompatibility between inorganic and polymer phases, the synthesis of inorganic-organic hybrid latexes often requires a preliminary step of modification of the mineral particles surface. The grafting of alkoxysilanes onto nanoceria was first attempted in order to promote the polymerization reaction at the surface of the inorganic particles. Cryo-Transmission Electron Microscopy (cryo-TEM) observations of hybrid latexes obtained via this route showed that this strategy was unsuccessful at improving the compatibility between the inorganic and polymer phases. Amphiphatic macro-RAFT agents were finally considered as reactive compatibilizing agents to direct the polymerization towards the cerium oxide surface. RAFT oligomers were first obtained by co- or terpolymerization reactions in the presence of a RAFT controlling agent. After characterizing the adsorption of amphiphatic macro-RAFT agents at the surface of nanoceria, surface-modified cerium oxide particles were then engaged in reactions of emulsion polymerization reactions. In most cases, cryo-TEM observations carried out on the resulting latexes confirmed the efficiency of the amphiphatic macro-RAFT agent route for the synthesis of hybrid structures. Therefore this route appeared so far to be the most promising for the synthesis of CeO2/PVDC hybrid latexes for use as waterborne barrier films with improved UV-stability.
Identifer | oai:union.ndltd.org:theses.fr/2012ENCM0011 |
Date | 30 October 2012 |
Creators | Garnier, Jérôme |
Contributors | Montpellier, Ecole nationale supérieure de chimie, Ecole nationale supérieure de chimie (Montpellier), Lacroix-Desmazes, Patrick |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0034 seconds