Alkali-soluble resins (ASRs) were prepared by (i) solution and (ii) emulsion polymerization. All ASRs were synthesized with number-average molar masses < 20,000 g mol-1 and all had 15 wt% methacrylic acid 5 wt% styrene, the remaining 80 wt% was composed of either methyl methacrylate or a combination of methyl methacrylate and ethyl acrylate. All emulsion ASRs were made to 20% solids, with volume-average particle diameters (dv) in the region 30 – 50 nm, with a glass transition temperature of 80 – 120 °C. Emulsion polymerization was the preferred route for ASR synthesis, to allow further studies on their dissolution behaviour. Before their use as colloidal stabilizers, the dissolution behaviour of the ASRs needed to beinvestigated e.g. effect of temperature, molar mass, and composition. Particle size and absorbance measurements were taken during dissolution of ASRs to achieve 100%neutralization and these were shown to have two stages, an apparent particle swelling (whichwas rapid), and a slower, decrease in particle size as water-soluble polymeric material wasdiffusing out of the ASR particles. From this, further interpretation allowed for calculating the diffusion coefficient of the ASR polymer using the Stokes-Einstein equation. Time-domain nuclear magnetic resonance (TD-NMR) was employed to enhance understanding of what is occurring in the ASR particles, and in the aqueous, continuous phase. The final aspect of this project was to use the ASRs prepared as colloidal stabilizers in emulsion polymerizations of butyl acrylate (BA) and butyl methacrylate (BMA) using varying levels and also the effect of adding additional surfactant. The results show that the effect of ASR molar mass, the concentration of stabilizer, and also the impact of the EA-containing ASR greatly influence stability, whereby lower ASR molar mass, higher levels of stabilizer and including EA greatly benefit colloidal stability in PBA latexes. In PBMA latexes, a similar trend was also observed, but, the presence of ethyl acrylate (EA) in the ASR backbone has a detrimental effect on the colloidal stability, caused by the inability of grafting to occur between the ASR and PBMA.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:706229 |
Date | January 2012 |
Creators | Hunt, Paul Edward |
Contributors | Lovell, Peter |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/protective-colloids-understanding-nucleation-and-grafting(a5f5c8c9-acc7-492b-bf81-3cf327af98cf).html |
Page generated in 0.0022 seconds