Broadcasting is used in on-demand routing protocols to discover routes in Mobile Ad-hoc Networks (MANETs). On-demand routing protocols, such as Ad-hoc On-demand Distance Vector (AODV) commonly employ pure flooding based broadcasting to discover new routes. In pure flooding, a route request (RREQ) packet is broadcast by the source node and each receiving node rebroadcasts it. This continues until the RREQ packet arrives at the destination node. Pure flooding generates excessive redundant routing traffic that may lead to the broadcast storm problem (BSP) and deteriorate the performance of MANETs significantly. A number of probabilistic broadcasting schemes have been proposed in the literature to address BSP. However, these schemes do not consider thermal noise and interference which exist in real life MANETs, and therefore, do not perform well in real life MANETs. Real life MANETs are noisy and the communication is not error free. This research argues that a broadcast scheme that considers the effects of thermal noise, co-channel interference, and node density in the neighbourhood simultaneously can reduce the broadcast storm problem and enhance the MANET performance. To achieve this, three investigations have been carried out: First, the effect of carrier sensing ranges on on-demand routing protocol such as AODV and their impact on interference; second, effects of thermal noise on on-demand routing protocols and third, evaluation of pure flooding and probabilistic broadcasting schemes under noisy and noiseless conditions. The findings of these investigations are exploited to propose a Channel Adaptive Probabilistic Broadcast (CAPB) scheme to disseminate RREQ packets efficiently. The proposed CAPB scheme determines the probability of rebroadcasting RREQ packets on the fly according to the current Signal to Interference plus Noise Ratio (SINR) and node density in the neighbourhood. The proposed scheme and two related state of the art (SoA) schemes from the literature are implemented in the standard AODV to replace the pure flooding based broadcast scheme. Ns-2 simulation results show that the proposed CAPB scheme outperforms the other schemes in terms of routing overhead, average end-to-end delay, throughput and energy consumption.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:676006 |
Date | January 2015 |
Creators | Adarbah, Haitham |
Publisher | De Montfort University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/2086/11398 |
Page generated in 0.0017 seconds