Return to search

Functional Characterization of the Streptococcus sanguinis com Regulon

Streptococcus sanguinis is an important component of the dental plaque biofilm and is believed to play a beneficial role in the oral cavity. S. sanguinis is also a leading cause of infective endocarditis (IE), a potentially lethal infection of the cardiac valves. S. sanguinis possesses genetic competence, the ability to acquire exogenous DNA into its genome. In the well characterized system of S. pneumoniae, genetic competence requires a quorum sensing system encoded by the early comCDE genes, as well as late genes controlled by the alternate sigma factor, ComX. Previous studies in other streptococcal species have suggested functions for the com regulon apart from DNA uptake. Here we characterized functions of the S. sanguinis com regulon genes in genetic competence, IE virulence, and biofilm formation. Our findings indicated that the early regulatory genes and those under the control of ComX in S. sanguinis play similar roles in genetic competence as their orthologs in other competent streptococci; however the sequence and mechanism of processing of the quorum sensing signal, competence-stimulating peptide, CSP, were determined to be unique. Using a rabbit endocarditis model, we determined that the comCDE and comX genes were not required for virulence, bacteremia, or pathology under a variety of infection conditions. In contrast, examination of biofilms by microscopy and crystal violet staining indicated that S. sanguinis CSP enhanced biofilm formation in a comDE-dependent manner. Deletion of the early com gene SSA_0195 eliminated this effect, while expression of the gene from an inducible promoter increased biofilm formation in the absence of CSP. Deletion of the comX gene resulted in biofilms with increased staining, cell death, and profoundly altered structure. Treatment with DNase I reduced biofilm formation in a com-independent manner. Taken together, these results suggest that expression of SSA_0195 is both necessary and sufficient for CSP-dependent biofilm enhancement, and that the late gene activator, ComX, is required to maintain normal biofilm architecture. Our findings suggest the com regulon of S. sanguinis may be an important determinant of competitiveness in the mouth, where native CSP production may occur at levels sufficient to influence biofilm formation.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-1251
Date28 July 2011
CreatorsCallahan, Jill
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0022 seconds