Return to search

The tumor vasculature : functional reactivity and therapeutic implications

In the past decades, tumors have progressively been perceived as highly integrated systems in which the genetically unstable tumor cells and the genetically stable host cells cooperate to promote tumor growth. This view suggests that, beside tumor cells (that are targeted by conventional anticancer treatments such as radio- and chemotherapy), host cells within the tumor microenvironment can be targeted by antitumor therapy. Such alternative strategies are strongly supported by the need to overcome several limitations of the conventional therapies targeting tumor cells, such as collateral toxicity due to lack of tumor selectivity, limited tumor accessibility, and the selection of treatment-resistant variants. By contrast to tumor cells, the genetically stable host cells should not develop resistance to treatments. In this context, the observation that tumor growth is fundamentally dependent on the onset of a private tumor neovasculature (tumor angiogenesis) has revolutionized the field of cancer research. Several treatments have been developed aimed to prevent tumor angiogenesis (anti-angiogenic strategies) or to erase the existent tumor vasculature (anti-vascular approaches) supporting the survival and growth of thousands of tumor cells. However, although such therapies achieved cancer cure in animal models, they turned out to be rather inefficient when tested in patients. This can be attributed to differences in the angiogenic status between fast-growing animal tumors and slow-growing human tumors at the time of clinical detection.
Another reading of the above-mentioned observations is that anticancer treatments could benefit from interventions aimed at increasing their efficiency. For instance, radiotherapy could benefit from tumor reoxygenation while a decrease in tumor interstitial pressure could facilitate tumor accessibility to circulating agents. In this context, the mature vasculature is an attractive target since it controls tumor blood supply and is highly accessible for therapy. Therefore, strategies aimed at exploiting its functional reactivity by inducing vasorelaxation have the potential to improve tumor perfusion/drug delivery and oxygenation/radiosensitivity. To be exploited in the clinics, such pro-vascular approaches have to fulfill essential requirements. First, they need to achieve high selectivity for tumor vessels. It should prevent systemic toxicity as well as the stealing of the blood flow towards the peripheral vasculature. Second, vasodilation has to be transient, so that the tumor should not take advantage of an increased energetic supply to grow faster. Third, the therapeutic effects have to be achieved in several tumor types and in different host strains to gain a wide therapeutic range of applicability. Finally, vasomodulation has to be achieved with interventions relevant to the clinical situation, ensuring direct therapeutic significance. However, the therapeutic exploitation of agents modulating tumor perfusion was generally hampered by confounding effects on the systemic blood pressure. In our studies, we have documented that this lack of tumor selectivity can be overcome by identifying vasomodulatory pathways that are selectively altered within the tumor microenvironment, allowing selective vasomodulatory interventions.
According to the criteria detailed above, to identify a differential tumor vascular reactivity, we had to work with mice models of mature tumor vascularization. We reasoned that preexisting host arterioles in mice, if coopted, should retain architectural characteristics (such as a muscular coat) necessary for functional reactivity but also be influenced by the tumor microenvironment at both molecular and functional levels. To gain in reproducibility, this model was developed by injecting syngeneic tumor cells in the vicinity of the saphenous arteriole (i.e., a collateral branch of the femoral artery) in the rear leg of mice. With tumor growth, this arteriole was progressively included in the tumor cortex (coopted), with side branches running deeply into tumors. This model was developed using several tumors and mice strains. It provides the unique advantage to allow the easy identification and isolation of mature tumor vessels from fast-growing animal tumors. To evaluate differential vasoreactivity in those tumor-coopted vessels, we adapted pressure myography, a device initially dedicated to the study of the reactivity of coronary arterioles (see annex 1). In our hands, the unprecedented application of pressure myography to the study of small tumor vessels proved to be very efficient. Indeed, this technique not only served us to confirm that arterioles remain sensitive to vasomodulation under tumor cooption, but also allowed us to evidence two major adaptations of host vessels to the tumor microenvironment: the acquisition of an ET-1-mediated basal constrictive tone and a defect in the vasodilatory NO pathway. Furthermore, we used pressure myography to identify and characterize vasomodulatory strategies exploiting these differential reactivities. More particularly, we showed that both BQ123 (an ETA inhibitor) and ionizing radiations (that restored a functional NO pathway) promoted the vasodilation of the tumor-coopted vessels. In vivo, we verified that these strategies fulfilled the essential requirements of pro-vascular approaches: tumor selectivity, transient effects, broad range of applicability, and therapeutic significance in clinically relevant regimens. This latter study led us to further explore the effects of radiotherapy on the status of the tumor vasculature. Hence, we showed that fractionated radiotherapy induced tumor angiogenesis, thereby providing a rationale to combine radiotherapy to anti-angiogenic therapies.

Identiferoai:union.ndltd.org:BICfB/oai:ucl.ac.be:ETDUCL:BelnUcetd-01122004-101853
Date16 January 2004
CreatorsSonveaux, Pierre
PublisherUniversite catholique de Louvain
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-01122004-101853/
Rightsmixed, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses UCL. A cette fin, je donne licence à l'UCL : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.

Page generated in 0.0032 seconds