Return to search

Regulation of human endocardial endothelial cells' secretion of endothelin-1 by neuropeptide Y

Endocardial endothelial cells (EECs) can exert a significant influence on cardiac function by releasing various factors such as nitric oxide (NO), prostanoids, endothelin-1 (ET-1) and angiotensin II (Ang II). Recently, results obtained in our laboratory demonstrated the presence of NPY and its receptors, Y[subscript 1] and Y[subscript 2], as well as ET-1 and its receptors, ET[subscript A] and ET[subscript B], at the level of endocardial endothelial cells (EECs). We have also shown that NPY induces a sustained rise in the intracellular calcium level of these cells, and that only right ventricular EECs have the capacity of secreting NPY. Moreover, the evidence in the literature has become plentiful about complex interactions existing between ET-1 and other cardioactive mediators, such as NO and Ang II. Based on the above-mentioned data, the objective of this study was to investigate if a dialogue equally exists between the systems of NPY and ET-1 at the level of human right (hREECs) and left (hLEECs) ventricular EECs. Using the technique of indirect immunofluorescence coupled to 3-D confocal microscopy, as well as ELISA, our results show that increasing concentrations of NPY (10[superscript -15], 10[superscript -10] and 10[superscript -5]M) induce the release of ET-1 from REECs and LEECs in a time- and dose-dependent fashion. However, right ventricular EECs seem to have a higher ET-1 secretory capacity as compared to their left counterparts. Upon the use of selective antagonists for the NPY receptors, Y[subscript 1], Y[subscript 2] and Y[subscript 5], and the ET-1 receptors, ET[subscript A] and ET[subscript B], our results demonstrated that in REECs the NPY-induced release of ET-1 seems to be primarily due to Y[subscript 2] receptor activation, with the subsequent activation of the ET[subscript A] and ET[subscript B] receptors by the released ET-1. On the other hand, in LEECs, the NPY-evoked secretion of ET-1 seems to be mainly the result of Y[subscript 5] receptor activation by NPY. Unlike REECs, the ET-1 released by NPY in this type of cells does not seem to be contributing further to its own release by activation of its ET[subscript A] and ET[subscript B] receptors. Therefore, our results suggest that NPY is a regulator of ET-I secretion at the level of human EECs, and that this secretory process of ET-1 is different between the right and left ventricular cells. Moreover, these results serve to highlight and endorse the important sensory and tuning roles that right and left ventricular EECs possess, respectively. The ability of EECs to contribute to the local as well as systemic release of factors, such as NPY and ET-1, can affect not only the excitation-secretion coupling of EECs and the excitation-contraction coupling of cardiomyocytes, but also the physiological and pathophysiological state of the underlying, heart muscle.

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/4271
Date January 2008
CreatorsAbdel-Samad, Dima
ContributorsBkaily, Ghassan, Jacques, Danielle
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageEnglish
Detected LanguageEnglish
TypeThèse
Rights© Dima Abdel Samad

Page generated in 0.0028 seconds