Return to search

Numerical Modeling and Analysis of Small Gas Turbine Engine : Part I: Analytical Model and Compressor CFD

The thesis work aims at devising analytical thermodynamic model and numerical modeling of the compressor of a small gas turbine to be operated on producer gas with lower heating contents. The turbine will serve as a component of “EXPLORE-Biomass Based Polygeneration” project to meet the internal electrical power requirements of 2-5 KW. The gas turbine engine is of radial type (one stage radial compressor, one stage radial turbine). Small gas turbines give less electrical efficiencies especially when operated with lower heating contents fuels like producer gas. This necessitates for optimum designing of components of the entire machine. Detailed analytical thermodynamic modeling of the engine has been analyzed for both internally and externally fired gas turbine cycles. Efforts are put on optimum utilization of energy available in the cycle and to enhance the efficiency thereby including various components. Numerical modeling of compressor using CFX has been performed for both steady and unsteady states. First different mesh sizes have been investigated followed by study of RMS residual targets on the results. Compressor performance has been studied for various speed lines. Thereafter, detailed steady state and unsteady simulations are performed for various cases including compressor single blade passage, 360 degree complete compressor, compressor connected with straight inlet pipe and for the compressor connected with 90 degree bended pipe. The operating point of the entire engine is analyzed. The numerical results are compared with each other and then to the ones from the 1D modeling. A good agreement has been found between the numerical results. Compared to 1D modeling, CFD presents higher performance at higher mass flow rates. However, for lower mass flow rates both 1D model and CFD present a similar performance. / <p>This study was funded by Higher Education Commission (HEC) of Pakistan.</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-184855
Date January 2009
CreatorsAhmad, Nawaz
PublisherKTH, Kraft- och värmeteknologi, KTH Royal Institute of Technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationEGI-2009-001MSC EKV1128

Page generated in 0.0378 seconds