Return to search

Power and Methanol Production from Biomass Combined With Solar and Wind Energy : Analysis and Comparison

The purpose of this work is to investigate the feasibility of an integrated system consisting of biomass-based power generation built-in with carbon capture technology combined with a water electrolysis unit operated by solar cells and wind turbines to produce fuel through the methanol synthesis process. The configurations are examined both technically and economically to determine their feasibility, and subjected to sensitivity analysis to determine their economic viability and optimum performance. Each integrated system has the same subsystems configuration including electrical power generation, electrolysis unit and solar/wind renewable electricity input. Three main system configuration variations for carbon extraction from biomass feedstock have been evaluated, based on pre-CCS in the form of integrated biomass gasification combined cycle (IGCC), in-situ CCS represented by Oxy-fuel combustion concept, and post-CCS via exhaust gas treatment, assuming the same access to woodchip feedstock.Two important substances for methanol production are carbon dioxide coming from biomass and hydrogen supplied by water electrolysis based on intermittent renewable energy sources. Coil evaporation system to provide CO2 separation would perform differently in each system; oxy-fuel, pre-CCS and post-CCS alternatives. Meanwhile, H2 supply is provided by the electrolysis process using water supply and electricity produced from solar and wind power. In addition, the effect of location and uncertainty factors is discussed among the sensitivity studies. The technical analysis shows that with 5 ton/hour of biomass feed, each system configuration could produce up to 5.8 t/h of methanol. On the other hand, the economic analysis shows LCOE of Oxy-fuel and the IGCC approaches the lowest possible to 0.086 €/kWh and 0.1060 respectively; while for the gasification process 689 €/ton methanol is produced. The interest rate risk can deviate from the energy cost up to 16% higher when the interest rate is increased from 8% to 9%. / Syftet med detta arbete är att undersöka genomförbarheten av ett integrerat system bestående av den biomassbaserade kraftproduktionen inbyggd med kolfångteknik och vattenelektrolyssystemet drivs av solceller och vindkraftverk för att producera bränsle genom metanolsyntesprocess. Systemen undersöks både tekniskt och ekonomiskt för att bestämma genomförbarheten av denna studie. Varje system kommer att ha samma delsystemskonfigurationer som består av solenergi-metanol-vatten-elektrolysystem. Tre olika system, baserade på integrerad förgasningskombinerade cykel (IGCC), Syreförbränning och avgasrening utvärderades med samma tillgång till träflis inmatning. Två viktiga ämnen för metanolproduktion är koldioxid (CO2) som kommer från biomassa kraftverk och väte (H2) levereras av vattenelektrolysystem. Kolfångningssystem som ge CO2 till systemet verka olika i varje system; oxy-fuel-CCS, för-CCS och post-CCS koncept. Under tiden tillföras H2-krävande genom vattenselektrolysprocessen med användning av el som producerad från sol- och vindkraft.Dessutom diskuteras effekten av plats- och osäkerhetsfaktorer som känslighetsstudier. Den tekniska analysen visar att med 5 ton / timma utbud av biomassa kan varje system producera upp till 5,8 ton / timma metanol. Å andra sidan visar den ekonomiska analysen LCOE av Oxy-fuel och IGCC kan närma sig lägst möjligt till 0,086 €/kWh respektive 0,1060 €/kWh, medan syngasförgasningen levererar 689 €/ton tillverkat metanol. Osäkerhetsfaktorn av räntesatsen kan deviera energikostnaden upp till 16% högre när räntan ökas från 8% till 9%.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-226526
Date January 2018
CreatorsFirmansyah, Husni
PublisherKTH, Kraft- och värmeteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ITM-EX ; 2018:772

Page generated in 0.0022 seconds