Data centers requires a lot of energy due to that data centers count as the buildings also contains servers, cooling equipment, IT-equipment and power equipment. As the cooling solution for many data centers around the world right now, the compressor-based cooling solution counts for around 40% of the total energy consumption. A non-compressor-based solution that is used in some data centers, but also is in a research phase is the free cooling application. Free cooling means that the outside air is utilized to cool down the data center and there are two main technologies that contains within free cooling: airside free cooling and waterside free cooling. The purpose of this master thesis is to analyze two types of coils; one corrugated and the other one smooth, providing from Bensby Rostfria, to investigate if it is possible to use free cooling in 5G EDGE data center in Luleå, with one of these coils. The investigation will be done during the warmest day in summer. This because, according to weather data, Luleå is one candidate where this type of cooling system could be of use. The project was done through RISE ICE Datacenter where two identical systems was built next to each other with two corrugated hoses of different diameter and two smooth tubes with different diameter. The variables that was measured was the ambient temperature within the data hall, the water temperature in both water tanks, the temperature out from the system, the temperature in to the system and the mass flow of the air that was going to go through the system. The first thing that was done was to do fan curves to easier choose which input voltages for the fans that was of interest to do further analysis on. After that was done, three point was taken where the fan curve was of most increase. The tests were done by letting the corrugated hoses and smooth tubes to be in each of the water tanks and fill it with cold water. It was thereafter the coils that should warm the water from 4,75 °C – 9,75 °C, because of that the temperature in the data center was around 15 °C. The rising in particularly these temperatures was chosen because it is seen that to use free cooling the temperature differences must be at least 5 °C. The tests were done three times to get a more reliable result. All the data was further taken in to Zabbix and to further analysis in Grafana. When one test was done the files was saved from Grafana to Excel for compilation, and thereafter to Matlab for further analysis. The first thing that was analyzed was if the three different tests with the same input voltages gave similar results in the water temperature in the tank and the temperature out from the system. Thereafter, trendlines was built to investigate the temperature differences in and out of the system, the temperature differences in and the water temperature in the tank, the mass flow and the cooling power. That trendline was further in comparison to each other, which was 2D-plots between the cooling power and the temperature differences between the inlet and the water. Thereafter the both coils could compare to each other to see which of them that gave the largest cooling power and was most efficient to install in a future 5G data center module. The conclusion for this master thesis is that the corrugated hose will give a higher cooling power with higher temperature differences outside, but during the warmest summer day it was distinctly the smooth tube that gave the largest cooling power and therefore the best result. The smooth tube also got, through hand calculations, the larger amount of pipe that was necessary to cool down the 5G module, but the smallest water tank. It was also shown that for the warmest summer day, a temperature in the water tank of 24 °C is the best, compared to 20 °C and 18 °C. The amount of coil that is needed to cool down the data center with a temperature in the water tank at 24 °C and how large the water tank differs between the two types of coils. For the corrugated hose a length of 1.8 km and a water tank of 9.4 m3. As for the smooth tube a length of 1.7 km and a water tank volume of 12 m3. As can be seen throughout this project is that this type of cooling equipment is not the most efficient for the warmest summer day but could easily be used for other seasons.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-79126 |
Date | January 2020 |
Creators | Johansson, Jennifer |
Publisher | Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds