Cellulose is the most abundant biopolymer in the world and the main
component of paper. Modern society requires electronic devices to be more
flexible and environmental friendly, which makes cellulose as a good
candidate for the next generation of green electronics. However, lots of
researches employed “paper-like” petroleum-based polymers to fabricate
electronics rather than using real cellulose paper. Cellulose, as a
representative of environmental friendly materials, caught into people's
attention because of its sustainable nature, ease of functionality,
flexibility and tunable surface properties, etc. There are some general
challenges about using cellulose for electronics, such as its
non-conductivity, porosity and roughness, but these features can be taken
advantages of on certain occasions. This thesis focuses on the study of
cellulose-based electronic devices by chemical or physical modification of
microfibrillated cellulose (MFC). Particularly, three electronic devices
were fabricated, including ionic diodes, electric double layer
supercapacitors, pseudocapacitors. In addition, a rational design of
dye-sensitized solar cell was investigated, although it was not directly
cellulose-based, it led the way to the next generation of cellulose-based
solar cells. The extraordinary physical and chemical properties of MFC were
successfully leveled in those devices, in addition, inspiring and effective
fabrication methods were proposed and carried out to solve the major
problems faced by paper-based electronics, such as conductivity,
flexibility, packaging and designs.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53057 |
Date | 12 January 2015 |
Creators | Zhang, Xiaodan |
Contributors | Deng, Yulin, Wang, Youjiang |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0028 seconds