Return to search

District Heating and CHP : Local Possibilities for Global Climate Change Mitigation

Global warming, in combination with increasing energy demand and higher energy prices, makes it necessary to change the energy use. To secure the energy supply and to develop sustainable societies, construction of energy-efficient systems is at the same time most vital. The aim of this thesis is therefore to identify how a local energy company, producing district heating (DH), district cooling (DC) and electricity in combined heat and power (CHP) plants, can contribute to resource-efficient energy systems and cost-effective reductions of global carbon dioxide (CO2) emissions, along with its customers. Analyses have been performed on how a local energy company can optimise their DH and DC production and what supply-side and demand-side measures can lead to energy-efficient systems in combination with economic and climate change benefits. The energy company in focus is located in Linköping, Sweden. Optimisation models, such as MODEST and reMIND, have been used for analysing the energy systems. Scenario and sensitivity analyses have also been performed for evaluation of the robustness of the energy systems studied. For all analyses a European energy system perspective was applied, where a fully deregulated European electricity market with no bottlenecks or other system failures was assumed. In this thesis it is concluded that of the DH-supply technologies studied, the biomass gasification applications and the natural gas combined cycle (NGCC) CHP are the technologies with the largest global CO2 reduction potential, while the biomass-fuelled plant that only produces heat is the investment with the smallest global CO2 reduction and savings potential. However, the global CO2 reduction potential for the biomass integrated gasification combined cycle (BIGCC) CHP and NGCC CHP, the two technologies with highest electricity efficiencies, is highly dependent on the assumptions made about marginal European electricity production. Regarding the effect on the DH system cost the gasification application integrated with production of renewable biofuels (SNG) for the transport sector is the investment option with the largest savings potential for lower electricity prices, while with increasing electricity prices the BIGCC and NGCC CHP plants are the most cost-effective investment options. The economic outcome for biomass gasification applications is, however, dependent on the level of policy instruments for biofuels and renewable electricity. Moreover, it was shown that the tradable green certificates for renewable electricity can, when applied to DH systems, contribute to investments that will not fully utilise the DH systems’ potential for global CO2 emissions reductions. Also illustrated is that conversion of industrial processes, utilising electricity and fossil fuels, to DH and DC can contribute to energy savings. Since DH is mainly used for space heating, the heat demand for DH systems is strongly outdoor temperature-dependent. By converting industrial processes, where the heat demand is often dependent on process hours instead of outdoor temperature, the heat loads in DH systems can become more evenly distributed over the year, with increased base-load heat demand and increased electricity generation in CHP plants as an outcome. This extra electricity production, in combination with the freed electricity when converting electricity-using processes to DH, can replace marginal electricity production in the European electricity market, resulting in reduced global CO2 emissions. Demonstrated in this thesis is that the local energy company, along with its customers, can contribute to reaching the European Union’s targets of reducing energy use and decreasing CO2 emissions. This can be achieved in a manner that is cost-effective to both the local energy company and the customers. / Den globala uppvärmningen i kombination med ett ökat energibehov och stigande energipriser gör det nödvändigt att förändra energianvändningen. Energieffektiva system är samtidigt en förutsättning för att kunna säkra energitillförseln och utveckla hållbara samhällen. Fjärrvärme har en viktig roll att fylla i den här omställningen. I fjärrvärmesystemen kan värmeresurser som annars kan vara svåra att nyttiggöras, som till exempel spillvärme och förbränning av avfall tas tillvara. Fjärrvärme kan även bidra till elproduktion i kraftvärmeverk där totalverkningsgraden är högre än vid separat el- respektive värmeproduktion. En omställning av energisystemet till en ökad användning av fjärrvärme och minskad användning av el genom effektiviseringar och konverteringar från olja och el till fjärrvärme kan bidra till att skapa energieffektiva system. Syftet med den här avhandlingen är att identifiera hur ett lokalt energibolag som producerar fjärrvärme, fjärrkyla och el i kraftvärmeverk kan bidra till att skapa energieffektiva system och kostnadseffektiva globala koldioxidreduktioner tillsammans med sina kunder. Det energibolag som framförallt har studerats i den här avhandlingen är Tekniska Verken i Linköping AB. För att optimera energibolagets fjärrvärme- och fjärrkylaproduktion har energisystemanalyser genomförts, där både åtgärder på tillförsel- och användarsidan har studerats. Genom att se energiförsörjningen ur ett systemperspektiv kan man undvika att ekonomiska och miljömässiga vinster vid en anläggning ersätts av förluster någon annanstans. Optimeringsmodeller, som MODEST och reMIND, har använts för energisystemanalyserna där även scenarier och känslighetsanalyser har inkluderats. För alla energisystemanalyser har ett europeiskt energisystemperspektiv använts där en totalt avreglerad europeisk elmarknad utan flaskhalsar eller andra systemfel antagits. Slutsatser från analyserna är att det lokala energibolaget kan bidra till kostnadseffektiva globala koldioxidreduktioner genom ett effektivt nyttjande av bränslen i kraftvärmeanläggningar och i bioraffinaderier. Speciellt kraftvärmeanläggningar med hög elverkningsgrad, som t.ex. biomasseförgasning- och naturgaskombianläggningar, har en betydande global koldioxidreduktionspotential. Även biomasseförgasningsanläggningar som är integrerade med produktion av förnybara drivmedel för transportsektorn har visat sig kostnadseffektiva med stor potential att reducera de globala koldioxidutsläppen. Styrmedel har dock en stor påverkan på det ekonomiska utfallet för förgasningsanläggningarna. Dessutom har studierna visat att energibesparingar kan åstadkommas genom att konvertera el och fossilbränsledrivna industriella processer till fjärrvärme och fjärrkyla. Eftersom fjärrvärme framförallt används för lokaluppvärmning är värmelasten i fjärrvärmesystem säsongsbetonad. Genom att konvertera industriella processer som inte är utetemperaturberoende till fjärrvärme kan fjärrvärmelasten bli mindre säsongsbetonad och mer jämt fördelad över året. En jämt fördelad värmelast är fördelaktig för driften av fjärrvärmeanläggningar och kan bidra till mer elproduktion i kraftvärmeanläggningar. Den extra elproduktionen, tillsammans med den el som blivit tillgänglig efter konvertering av eldrivna processer till fjärrvärme, kan ersätta europeisk marginalelsproduktion vilket kan reducera de globala koldioxidutsläppen. Det som har framkommit av dessa studier är att det lokala energibolaget, tillsammans med sina kunder, kan bidra till att uppfylla de mål den Europeiska Unionen har angående reduktionen av energianvändningen och koldioxidutsläppen. Dessutom kan detta ske på ett kostnadseffektivt sätt för både energibolaget och dess kunder.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-58716
Date January 2010
CreatorsDifs, Kristina
PublisherLinköpings universitet, Energisystem, Linköpings universitet, Tekniska högskolan, Linköping : Linköpings universitet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1336

Page generated in 0.0033 seconds