O etanol está consolidado como combustível para movimentação de veículos leves no Brasil e, nos últimos 40 anos, apenas a cultura de cana-de-açúcar tem sido explorada comercialmente para a produção deste combustível. Por outro lado, o desenvolvimento agrícola vem proporcionando safras recordes de grãos nas últimas décadas. A produção de milho se destaca pelo aumento da produtividade, podendo ser semeado como cultura principal ou como cultura de inverno em rotação com a soja. O sorgo, por sua vez, pode atuar como um substituto do milho, apresentando maior rusticidade e tolerância à seca. Dada essa conjuntura, usinas de etanol do Mato Grosso se associaram a produtores de milho e sorgo para incluir novas matéria-primas no processo de produção de combustíveis, compartilhando uma mesma unidade industrial, denominada Usina Integrada ou Usina Flex. No contexto atual, o desenvolvimento de novas tecnologias e setores produtivos exige a consideração de suas potenciais implicações energéticas e ambientais. A Avaliação de Ciclo de Vida (ACV) é uma ferramenta da gestão ambiental usada para avaliar impactos ambientais potenciais associados a produtos, processos e serviço. Sua principal característica é se prestar a essa avaliação de forma sistêmica, levando em conta todas as etapas do seu ciclo de vida. O objetivo deste trabalho foi avaliar e comparar os desempenhos ambiental e energético da produção de etanol a partir dos ativos agrícolas cana-de-açúcar, milho e sorgo, no contexto de usina autônoma integrada, segundo a abordagem do ciclo de vida. Para tanto, estudos de ACV foram conduzidos para cada um dos três produtos, seguindo as diretrizes das normas ABNT NBR ISO 14.040:2009 e ABNT NBR ISO 14.044:2009. Para a análise ambiental aplicou-se o método de Avaliação de Impacto do Ciclo de Vida (AICV) ReCiPe midpoint e, para a análise energética, o método Demanda de Energia Cumulativa foi utilizado, seguido pelo cálculo dos Índices de Retorno Energético sobre o Investimento (EROI) para cada combustível. A unidade funcional dos estudos foi 1 m³ de etanol hidratado e o sistema de produto incluiu a produção de insumos, produção da matéria-prima agrícola, produção de etanol, cogeração e etapas de transporte. Os resultados da análise ambiental demonstraram que o etanol de cana-de-açúcar apresenta melhor desempenho do que o etanol de milho e de sorgo em um número maior de categorias de impacto. As análises energéticas demonstraram que o uso de cavaco de madeira na etapa de cogeração dos processos de produção de etanol de milho e sorgo traduziu-se em ganhos energéticos, mas o etanol de cana-de-açúcar ainda apresenta um desempenho melhor por utilizar o bagaço para cogeração. Em termos de EROI, o etanol de cana-de-açúcar disponibilizou 9,77 unidades de energia para cada unidade consumida, o etanol de milho disponibilizou 2,68 e o etanol de sorgo disponibilizou 3,10. / Ethanol is consolidated as fuel to drive light vehicles in Brazil, but for the past 40 years, only the cultivation of sugarcane has been commercially exploited for the production of this fuel. On the other hand, agricultural development has provided high yields of grain in recent decades. Corn production is distinguished by increased productivity, and can be sown as main crop or as a winter crop in rotation with soybeans. Sorghum, in turn, has a higher roughness and tolerance to drought and can act as a substitute for corn. Given this situation, ethanol plants in Mato Grosso were associated with corn and sorghum producers to include new raw materials in the fuel production process, sharing the same plant, called Integrated Plant or Plant Flex. However, the development of new technology and production sectors requires consideration of its potential energy and environmental implications. The Life Cycle Assessment (LCA) is management tool used to evaluate potential environmental impacts associated with products, processes and services. Its main feature is to provide such an assessment in a systematic way, taking into account all stages of their life cycle. The objective of this study was to evaluate and compare the environmental and energy performance of ethanol production from sugarcane, corn and sorghum in the context of integrated autonomous plant, according to the life cycle approach. For that, LCA studies were conducted for each of the three products, following the guidelines of the standards ISO 14040: 2009 and ISO 14044: 2009. For environmental analysis the method of Life Cycle Impact Assessment (LCIA) Recipe midpoint was applied and for energy analysis Cumulative Energy Demand method was used, followed by the estimate of the Energy Return On Investment (EROI) for each fuel. The functional unit of the studies was 1 m³ of hydrous ethanol and the product system includes the production inputs, production of agricultural raw material, production of ethanol, cogeneration and transport stages. The results of the environmental analysis showed that the ethanol sugarcane performs better than the ethanol maize and sorghum in a greater number of impact categories. Energy analyzes have shown that the use of wood chips in cogeneration stage of corn ethanol production processes and sorghum has resulted in energy savings, but the ethanol sugarcane still performs better by using bagasse for cogeneration. In terms of EROI, the sugarcane ethanol provided 9.77 units of energy for every unit consumed, corn ethanol provided 2.68 and sorghum ethanol provided 3.10.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-13072016-092027 |
Date | 25 April 2016 |
Creators | Ana Cristina Guimarães Donke |
Contributors | Patricia Helena Lara dos Santos Matai, Suani Teixeira Coelho, Marília Ieda da Silveira Folegatti Matsuura |
Publisher | Universidade de São Paulo, Energia, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds