The stupendous growth in wireless and mobile devices in the recent years has prompted researchers to look at innovative approaches that enable effective use of the available resources. In this thesis, we propose a medium access control (MAC) protocol, referred to as EM-MAC, that enables wireless devices with multi-channel access capabilities while minimizing energy consumption. EM-MAC relies on iMAC's efficient channel selection mechanism to resolve the medium contention on the common control channel, and to select the best available data channel for data communication. Our protocol saves energy by allowing devices that have not gained access to the medium to switch to doze mode until the channel becomes idle again. The pair of devices that gains access to the data channel reserves and uses the channel until the end of the reservation period. At the end of each reservation period, devices belonging to a given data channel contend again for the medium, and only the pair of devices that wins access to the medium is allowed to communicate on the channel while all other devices switch to doze mode. Using simulations, we show that EM-MAC yields substantial energy savings when compared with iMAC. / Graduation date: 2012
Identifer | oai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/28857 |
Date | 22 March 2012 |
Creators | Sivanantha, Akhil |
Contributors | Hamdaoui, Bechir |
Source Sets | Oregon State University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0018 seconds