Return to search

Oscilační generátor s mechanickým resonančním členem / Oscillatory Power Generator Base on Mechanical Resonant Element

This work deals with the power supply of wireless sensors. When using a wireless sensor is desirable application of alternative energy sources, because the primary cells or batteries may reduce the extent or length of service of the sensor itself. Ambient energy can be used as a suitable alternative source. This energy must be in an appropriate form, which allows its conversion to electric energy. These appropriate, already used types include: solar en., temperature gradient en., en. of flowing liquids, vibration, etc. The advantage of vibrations is its presence in almost all mechanical systems. One of the possibilities for using the vibration of machine systems for power supply wireless sensors is using the vibration power generator with oscillating component. The generator must be designed so that its resonance frequency coincides with the frequency of vibration in the machine system. This method can be used only if the machinery system vibrations at least partially constant. Another option is to use the vibrations caused by, for example, transit transport, or different step acting factor. In this case, it is desirable that the generator is designed with variable resonant frequency, which can partly be achieved, for example, integrating several oscillating component in the body of generator. After the general analysis of the problem, graduation theses will be concerned with the possibility of use of energy from the short damped oscillation and step impulse. Focusing on a proposal of multi-element structures.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:228777
Date January 2009
CreatorsMihalík, Vlastimil
ContributorsHouška, Pavel, Hadaš, Zdeněk
PublisherVysoké učení technické v Brně. Fakulta strojního inženýrství
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0017 seconds