Return to search

Deep Energy Efficiency Retrofit of University Building to Meet 40% Carbon Reduction

The global prominence of energy-efficient retrofit in the context of aging properties has garnered noteworthy attention. This surge in interest can be attributed to several advantages, encompassing economically viable carbon dioxide (CO₂) emissions reduction, diminished energy expenditures, and improved indoor air quality. Passive retrofits, such as thermal insulation and fenestration improvement, and active retrofits, such as heating setpoint temperature optimization, offer great potential for CO₂ reduction and energy savings. The central objective of this study is ascertaining the feasibility of attaining a 40% reduction in CO₂ emissions with the lowest cost and with constraints on heating setpoints temperature by finding optimal design parameters encompassing thermal insulation (including both single and double-layer), fenestration, and heating setpoint temperatures. This inquiry is substantiated through a case study of the Leblanc residence on the University of Ottawa campus. In pursuit of this objective, a thermal model of the Leblanc building was developed via EnergyPlus and subsequently subjected to a validation process following ASHRAE Guideline 14. After validation, an array of discrete optimization scenarios was executed using the NSGA-II model, facilitated by the JEPLUS+EA software. This approach aimed to identify the most suitable parameters for achieving optimal CO₂ reduction and cost outcomes. Notably, the results showcased 20 solutions, each boasting a reduction of 40% or more in CO₂ emissions and heating setpoint temperature higher than 18 °C. While the choice to prioritize either cost or CO₂ reduction remains at the user's discretion, four solutions have been discerned as the most effective. Furthermore, the findings suggest that implementing these optimal solutions can significantly decrease CO₂ emissions, ranging between 41.79% and 46.36%. The associated costs were also determined to fall within $36,262 to $57,934.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/45954
Date14 February 2024
CreatorsHoushangi, Hanna
ContributorsKavgic, Miroslava
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0159 seconds