Return to search

Large eddy simulation of sound generation by turbulent reacting and nonreacting shear flows

The objective of the present study was to investigate the mechanisms of sound generation by subsonic jets. Large eddy simulations were performed along with bandpass filtering of the flow and sound in order to gain further insight into the pole of coherent structures in subsonic jet noise generation.A sixth-order compact scheme was used for spatial discretization of the fully compressible Navier-Stokes equations. Time integration was performed through the use of the standard fourth-order, explicit Runge-Kutta scheme. An implicit low dispersion, low dissipation Runge-Kutta (ILDDRK) method was developed and implemented for simulations involving sources of stiffness such as flows near solid boundaries, or combustion. A surface integral acoustic analogy formulation, called Formulation 1C, was developed for farfield sound pressure calculations. Formulation 1C was derived based on the convective wave equation in order to take into account the presence of a mean flow. The formulation was derived to be easy to implement as a numerical post-processing tool for CFD codes.Sound radiation from an unheated, Mach 0.9 jet at Reynolds number 400, 000 was considered. The effect of mesh size on the accuracy of the nearfield flow and farfield sound results was studied. It was observed that insufficient grid resolution in the shear layer results in unphysical laminar vortex pairing, and increased sound pressure levels inthe farfield. Careful examination of the bandpass filtered pressure field suggested that there are two mechanisms of sound radiation in unheated subsonic jets that can occur in all scales of turbulence. The first mechanism is the stretching and the distortion of coherent vortical structures, especially close to the termination of the potential core. As eddies are bent or stretched, a portion of their kinetic energy is radiated. This mechanism is quadrupolar in nature, and is responsible for strong sound radiation at aft angles. The second sound generation mechanism appears to be associated with the transverse vibration of the shear-layer interface within the ambient quiescent flow, and has dipolar characteristics. This mechanism is believed to be responsible for sound radiation along the sideline directions.Jet noise suppression through the use of microjets was studied. The microjet injection induced secondary instabilities in the shear layer which triggered the transition to turbulence, and suppressed laminar vortex pairing. This in turn resultedin a reduction of OASPL at almost all observer locations. In all cases, the bandpass filtering of the nearfield flow and the associated sound provides revealing details of the sound radiation process. The results suggest that circumferential modes are significant and need to be included in future wavepacket models for jet noise prediction.Numerical simulations of sound radiation from nonpremixed flames were also performed. The simulations featured the solution of the fully compressible Navier-Stokes equations. Therefore, sound generation and radiation were directly captured in the simulations. A thickened flamelet model was proposed for nonpremixed flames. The model yields artificially thickened flames which can be better resolved on the computational grid, while retaining the physically currect values of the total heat released into the flow. Combustion noise has monopolar characteristics for low frequencies. For high frequencies, the sound field is no longer omni-directional. Major sources of sound appear to be located in the jet shear layer within one potential core length from the jet nozzle. / L'objectif de cette étude est d'obtenir la meilleure compréhension des mécanismesde géneration de bruit par des jet subsoniques. Cette étude est basée sur simulations aux grandes échelles de jets réactifs et sans réactifs. Des calculs numériques employant des schéme compacts de sixiéme ordre. L'integration temporelle fut éxéciteé à l'aide de schéme Runge-Kutta de de quatrième ordre. Des schéme à faible dispersion et dissipation numérique. Un formulation intégrale basée sur les analogies acoustiques fut développées pour la prédiction du champ acoustique lointain pour les sources et observateure en mouvement dans un fluide avec vitesse uniforme. La formulation fut implémentée à l'aide d'algorithmes facilitant l'implémentation pour le traitement de données d'écoulement en haute performance utilisant des outils de simiulation à grande échelle. Les champs sonore produit par un jet turbulent non-réactif avec nombre de Mach de 0.9, et un nombre de Reynolds ReD = 400, 000 fut étudié. L'effect de la taille du maillage sur la précision de l'écoulement en champs proche et e champs sonore loin de source fut analysé. La sous-résolution de la couche de cisaillement à la sortie du jet méne à l'apparition de structures cohérentes et forte radiation qui ne sort pas physiquement réalistes. Deux mécanismes principaux de génération sonore par jets subsoniques furent identifiés. Le premier mécanisme est l'étirement et la distorsion de structures tourbillonnaires cohérentes, en particulier prés de la fin du coere potentiel. Ce mécanisme est quadripolaire, et émet principalement vers l'arriére du jet dans la direction de l'écoulement. Le seconde mécanisme semble être constitué de vibration transversale de la couche de cisaillement en réponse à la présemce de structures cohérentes dans la jet. Semblable à la radiation d'une plaque à bonds finis, la contribution de ce méchanisme est dipolaire et domine la champs sonore dans la direction transversale, perpendiculaire au jet. L'utilisation de plusieurs microjet fut investiguée pour la réduction du bruit. L'injection à l'aide de microjets précipite la transition à la turbulence, favorisent le mélange et la destrcutction de structures cohérentes de grande échelle. Un filtrage en bandes de étroites fut effectué. Ce traitement des données numériquepermet de visualiser les relations complexes entre l'écoulement et les onds sonores émises. Les résultats démontrent l'importance de modes circumférenciele, ce qui a des conséquenecs pour les modiles dits de paquets d'onde pour la preédiction du bruit du jet. Des simulation numériques d'écoulement et champs sonore d'une flame sans prémélange furent aussi éxécutées. Les simulations incluent encore une fois l'écoulement et le champ sonore associé, obtenus directement des équations de Navier Stokes compressibles. Un modèle flammelette épaissie fut proposé que donne flammes épaissies artificiellement qui peuvent être mieux résolus sur le maillage. Le bruit de combustion a des caractéristiques monopolaires aux basses fréquences. Principales sources de bruit semblent être situé dans la couche de cisaillement.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.107761
Date January 2012
CreatorsNajafi-Yazdi, Alireza
ContributorsLuc Mongeau (Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Mechanical Engineering)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0033 seconds