A tethered satellite system consists of two or more orbiting satellites linked together by a tether (or cable). Although much theoretical and experimental work has contributed to a good understanding of the short-term dynamics of tethered systems, their long-term behaviour remains unexplored. Hence, a detailed mathematical model and a software have been developed to analyse the long-term effect of the low Earth orbit environment on tethered systems. The software predicts the trajectory and the attitude of the system, as well as the temperature and the longitudinal vibrations of the tether. The program accounts for the effects of atmospheric lift and drag, asphericity of the Earth (zonal and sectorial harmonics), solar and Earth radiation, electromagnetic forces, lunisolar attraction, and material damping. / The thesis reviews previous research work in the field and extends it using more detailed models of external perturbations. Particular attention is given to the three major external forces influencing the dynamics of tethered systems: atmospheric forces, Earth oblateness effects, and electromagnetic forces. Furthermore, analytical solutions are provided for the problem of atmospheric drag induced shift of the equilibrium angle. / It was noted that the present formulation can predict the long-term motion of non-conductive librating tethered systems (such as TiPS) with greater accuracy than previous models. The simulation software is also used to study the behaviour of spinning and conductive systems. The results show that bare conductive tethers can decay the orbit of spent rocket stages or dysfunctional satellites over 100 kg at a lower "weight cost" than traditional rocket systems and much faster than atmospheric drag.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.29859 |
Date | January 1999 |
Creators | Lanoix, Eric LM. |
Contributors | Misra, Arun K. (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Engineering (Department of Mechanical Engineering.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001737902, proquestno: MQ55023, Theses scanned by UMI/ProQuest. |
Page generated in 0.002 seconds