Return to search

Decision support system for irrigation water management

Abstract Variability in seasonal precipitation, potential climate change impacts, competition for water among users, rising population and increasing food demands are putting pressure on agricultural water demands. For irrigated agriculture in Canada to play a major role in addressing current and future global food supply problems, more innovative and sustainable irrigation management approaches are required. In this context a decision support system that ensured more effective irrigation water allocation, application and optimisation was developed. Crop water requirements and irrigation schedules for bell pepper (Capsicum annuum L.) were obtained from greenhouse and field studies. Greenhouse experiments were conducted to determine appropriate irrigation water applications, agronomic and physiological response to water stress for peppers grown on clay and loamy sand soils. These studies involved four irrigation levels -120% (T120), 100% (T100), 80% (T80) and 40% (T40) of pan evaporation (Epan). The results showed that highest yields and water use efficiency were obtained with 120% Epan replenishment on loamy sand compared to clay soil. The corresponding crop water stress index (CWSI) at T120 was 0.18 to 0.20 on clay, and 0.09 to 0.11 on loamy sand. The fruit total soluble solids content was highest in the T40, and least in the T120 treatments.Given that the greenhouse results were obtained under controlled conditions, it was necessary to extend the research in the field. Experiments were conducted to determine the level of available soil water at which irrigation should be applied to prevent water stress and yield loss for peppers on a clay soil. Four irrigation thresholds, as a percentage of available water content, were investigated. These were: 85% (T1), 75% (T2), 50% (T3), and 25% (T4) available water content. A control of no irrigation (T5) was implemented. The crop water stress index (CWSI) and effects of elevated CO2 on the stomatal conductance and water applied were also investigated. The three CO2 levels studied were: ambient CO2 (~400 ppm), predicted CO2 for the year 2050 (550 ppm), and predicted CO2 for the year 2100 (750 ppm). Optimum marketable yields were achieved when 50% (T3) of the available water content had been depleted with a corresponding CWSI of 0.3 to 0.4. A decrease in stomatal conductance with increasing CO2 was observed. Irrigation water requirements decreased by 6-42% under elevated CO2 of 550 ppm, and 28-58% for elevated CO2 of 750 ppm. An integrated agricultural water demand model (IAWDM) was developed using a graphical user interface (GUI) in Matlab to estimate irrigation water requirements (IWR). A pre-requisite for the model development was to ensure that solar radiation (Rs) input data were of good quality. The suitability of nine (Rs) estimation methods, and their effects on reference evapotranspiration (ETo) were evaluated using data from eight weather stations across Canada. Based on Root mean square error (RMSE) of 1-6%, the Hargreaves and Samani (H-S) method gave best results for locations that did not have reliable, long term, observed Rs and sunshine duration data. Output from the IAWDM was compared with CROPWAT simulations, and metered irrigation water-use. IWR from IAWDM deviated from field data by 7 to 28%, while CROPWAT deviated by 7 to 42%. Future IWR was estimated using Agriculture and Agri-food Canada (AAFC) generated climate change data for 2040 to 2069. Results showed that IWR of bell peppers will increase by 19 to 27% in the future. A sensitivity analysis showed that IWR is most sensitive to air temperature, reference evapotranspiration (ETo), and crop coefficients, followed by solar radiation and precipitation.Overall the findings from this study led to a more sustainable greenhouse and field production of vegetable. The improved management practices increased irrigation water use efficiency thereby leading to a more beneficial use of agricultural water. / L'imprévisibilité des présentes précipitations saisonnières et des répercussions potentielles du changement climatique, ainsi que les besoins alimentaires grandissants d'une population croissante, mènent à une compétition plus acharnée entre les utilisateurs des ressources en eau, imposant ainsi d'importantes pressions sur la demande en eau à fins agricoles. Pour que l'agriculture irriguée au Canada puisse contribuer de façon significative à la résolution de présents et futures problèmes d'approvisionnement alimentaire mondial, des modes de gestion d'irrigation plus innovateurs et durables sont nécessaires. Dans ce contexte, un système d'aide à la décision assurant une plus grande efficacité d'allocation, d'application et d'optimisation des eaux d'irrigation fut conçue. Les études en serre établirent un régime d'irrigation approprié pour les poivrons et notèrent leurs réponses agronomiques et physiologiques à des stress hydriques lorsque cultivés sur un sol argileux ou un sable loameux. Quatre niveaux d'irrigation furent évalués, soit 120% (T120), 100% (T100), 80% (T80) ou 40% (T40) de l'évaporation bac (Ebac). Un réapprovisionnement à 120% Ebac entraîna un rendement et une efficacité d'utilisation de l'eau plus élevés sur le sable loameux que sur le sol argileux. L'indice de stress hydrique (ISH) de la culture soumise au taux de réapprovisionnement de 120% fut de 0.18 à 0.20 sur le sol argileux, et de 0.09 à 0.11 sur le sable loameux. Comme les résultats en serre furent obtenus sous des conditions hautement contrôlées, il fut nécessaire d'étendre la recherche à une culture en champ. Une étude fut entreprise sur un sol argileux pour déterminer quel seuil de pourcentage d'eau disponible dans le sol (85%, 75%, 50%, ou 25%) devrait entraîner une irrigation visant à prévenir un stress hydrique du plant de poivron et la perte de rendement qui en suivrait. Un étalon n'ayant reçu aucune irrigation fut également inclus. L'indice de stress hydrique (ISH) fut suivi et l'effet de teneurs élevés en CO2 sur la conductance stomatique et la quantité d'eau devant être appliqué furent également étudiés. Les trois teneurs en CO2 évalués furent celles de l'air ambiant présent (~400 ppm), et les teneurs prédites pour 2050 et 2100 (550 et 750 ppm, respectivement). Un rendement commercialisable optimal fut obtenu avec un seuil d'irrigation représentant à une carence de 50% en eau disponible du sol, ce qui correspond à un indice de stress hydrique de 0.3 à 0.4. Par rapport aux besoins en irrigation sous la présente teneur en CO2 de l'air ambiant, ces besoins diminuèrent de 6 à 42% sous une teneur en CO2 de 550 ppm, et de 28 à 58% sous une teneur en CO2 de 750 ppm. Un modèle intégré de demande en eau pour fins agricoles (MIDEFA) permettant l'estimation des besoins en eau d'irrigation (BEI) fut élaboré en utilisant l'interface graphique de Matlab. L'élaboration du modèle nécessita des données d'entrée de radiation solaire (Rs) de haute qualité. Laquelle de neuf méthodes permettant d'estimer Rs conviendrait le mieux fut évalué en utilisant des données parvenant de huit stations météorologiques canadiennes. Avec une erreur quadratique moyenne de 1 à 6%, la méthode Hargreaves et Samani (H-S) donna les meilleurs résultats. Les données tirées du MIDEFA furent comparées à celles tirées de simulations avec CROPWAT, et aux données provenant d'un compteur d'eau utilisée à fins d'irrigation. Les différences entre le BEI mesuré au champ et ceux calculés par MIDEFA et CROPWAT furent de 7 à 28% et 7 à 42%, respectivement. De futures BEI furent estimés en utilisant des données fournies par Agriculture et Agroalimentaire Canada (AAC), reflétant le changement de climat prévu pour 2040 et 2069. Selon cette analyse, le BEI pour les poivrons augmenterait de 19 à 27% dans l'avenir.Dans l'ensemble les constats de notre étude ont mené à une production de légumes plus durable à la fois en serre et au champ.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.123181
Date January 2014
CreatorsAladenola, Olanike
ContributorsChandra A Madramootoo (Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Bioresource Engineering)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically submitted theses

Page generated in 0.0027 seconds