Return to search

Electrochemical investigations of the interactive behavior of Nicotinamide Adenine Dinucleotide (NAD+/NADH) with electrode surfaces: towards direct electrochemical regeneration of enzymatically-active NADH

Nicotinamide adenine dinucleotide NAD(H) is a co-enzyme which participates in a large number of biochemical processes in which it acts as a hydrogen and electron carrier. Hence, NAD(H) is found in two redox forms: oxidized, NAD+, and reduced, 1,4-NADH. Despite its high potential industrial use, due to its very high cost (especially that of 1,4-NADH) and the need to be added in a biochemical reactor in stoichiometric quantities, its current use is very limited. Hence, there is a need to develop in-situ 1,4-NADH regeneration methods. Electrochemical methods are of particular interest because of their potentially low cost and easy product isolation. However, the major problem in the electrochemical regeneration of enzymatically-active 1,4-NADH is the formation of an enzymatically inactive dimer, NAD2. This PhD project focused on (i) the investigation of fundamental aspects of the interaction of NAD+ with a glassy carbon (GC) electrode surface, in terms of the NAD+ reduction kinetics and its adsorption, and on (ii) the development of electrodes for the direct (non-mediated) electrocatalytic regeneration of enzymatically active 1,4-NADH. Potentiodynamic polarization measurements showed that under the experimental conditions employed, the NAD+ reduction reaction is under diffusion control, is irreversible (requires overpotential of more than -550 mV), and is of pseudo-first order with respect to NAD+. The kinetics of reduction of NAD+ on GC at a formal potential of the NAD+/NADH couple (-0.885 V) was found to be rather slow, and only moderately temperature dependent.It was determined that NAD+ is adsorbed on a GC electrode surface. The kinetics of NAD+ adsorption was found to be surface-charge dependent. The adsorption process was described by the Langmuir isotherm. The corresponding apparent Gibbs free energy of adsorption evidenced that the adsorption process is highly spontaneous. The influence of electrode potential and electrode material on the purity of regenerated 1,4-NADH was then investigated. It was found that the regeneration of 1,4 NADH from NAD+ in a batch electrochemical reactor employing non-modified electrodes (GC, Carbon Nanofibers /CNFs/, Ti, Ni, Co and Cd) is feasible. The purity (recovery) of 1,4-NADH regenerated on these electrodes was found to be highly potential- and material-dependant. The origin of the material/potential dependency was related to the strength of the metal-hydrogen (M-Hads) bond, and thus to the potential dependence of the Hads electrode surface coverage and the kinetics of the subsequent NAD-radical protonation by Hads. Among the above outlined non-modified electrodes, only GC and CNF electrodes were capable of producing the highest 1,4-NADH purity (99-100%), but at very high cathodic potentials (–2.3 V).Therefore, to produce high-purity 1,4-NADH at lower cathodic potentials, a GC electrode surface was patterned with electrochemically-deposited platinum and nickel nano-particles (NPs). It was demonstrated that when the GC electrode was patterned with Pt NPs, a 100% pure 1,4-NADH product was achieved at –1.6 V, while the Ni nano patterned GC surface gave 100% pure 1,4-NADH already at –1.5 V. The high purity of 1,4-NADH formed on the two nano-patterned electrodes was prescribed to the formation of Pt-Hads and Ni-Hads at significantly lower potentials than on bare GC and CNFs surfaces. It was found that purity of 1,4-NADH regenerated on the nano-patterned electrodes was dependent on the electrode potential, nano-particles size, and their surface coverage. Considering the energy input, the cost of the electrode, and the percentage of recovery of 1,4-NADH (i.e. its purity), the GC-Ni electrode was suggested as the electrode of choice for 1,4-NADH regeneration among all investigated electrodes (GC, CNF, Ti, Co, Cd, Ni, GC-Pt and GC-Ni). / Nicotinamide-adénine-dinucléotide NAD(H) est une coenzyme qui participe à un grand nombre de processus biochimiques dans lesquels elle agit comme une transporteuse d'électrons et d'atomes d'hydrogène. En dépit de sa forte utilisation potentielle dans l'industrie, son utilisation actuelle est très limitée à cause de son coût très élevé (en particulier celui du 1,4-NADH) et la nécessité d'être ajouté en quantités stœchiométriques dans les réacteurs biochimiques. Par conséquent, il est nécessaire de développer des méthodes de régénération in-situ du 1,4-NADH. Les méthodes électrochimiques sont d'un intérêt particulier en raison de leur coût potentiellement faible et l'isolement facile du produit. Cependant, le problème majeur dans la régénération électrochimique du 1,4-NADH est la formation d'un dimère enzymatiquement inactif, NAD2. Ce projet de doctorat est axé sur (i) l'étude des aspects fondamentaux de l'interaction du NAD+ avec la surface d'un électrode en carbone vitreux (GC), en termes de la cinétique de réduction et l'adsorption du NAD+ sur la surface du GC, et (ii) le développement d'électrodes pour la régénération électrocatalytique directe (non médiatisée) du composé 1,4-NADH, active enzymatiquement actif.Les mesures de polarisation potentiodynamique ont montré que dans les conditions expérimentales utilisées, la réaction de réduction du NAD+ est contrôlée par la diffusion. Cette irréversible (nécessite une surtension de plus de -550 mV) et est de pseudo premier ordre par rapport au NAD+. La cinétique de réduction du NAD+ sur GC, an potentiel formel du couple NAD +/NADH (-0.885 V), est lente, et modérément dépendante de la température. Le NAD+ est adsorbé sur la surface de l'électrode en GC. La cinétique d'adsorption du NAD+ s'est avérée dépendante de la charge surfacique. Le processus d'adsorption a été décrit par l'isotherme de Langmuir. L'énergie de Gibbs d'adsorption correspondante a montré que le processus d'adsorption est très spontané.L'influence du potentiel et du matériel de l'électrode sur la pureté du 1,4-NADH régénéré, a ensuite été étudiée. Il a été constaté que la régénération de 1,4-NADH à partir de NAD+, dans un réacteur électrochimique discontinu, employant des électrodes non modifiés est possible. La pureté (récupération) du 1,4-NADH régénéré sur ces électrodes a été jugée dépendante du potentiel et du matériel de l'électrode. L'origine de cette relationentre la nature elu nature ela matériel et le potentiel été liée à la force de liaison métal-hydrogène (M-Hads), et donc à la couverture du Hads sur la surface de l'électrode, que dépend du potentiel. Seuls les électrodes en GC et CNF ont été capables de produire la plus haute pureté du composé 1,4-NADH (99-100%), mais à des potentiels cathodiques le élevés (-2.3 V). Donc, pour produire 1,4-NADH de haute pureté à faibles potentiels cathodiques, la surface d'une électrode en GC a été modifiée par des nanoparticules (NPs) de platine et nickel, déposées par voie électrochimique. Il a été démontré que lorsque l'électrode en GC a été modifiées avec des NPs de Pt, le produit 1,4-NADH, avec une pureté de 100%, a été obtenu à -1.6 V, tandis que l'électrode en GC modifiée avec les NPs de Ni a produit 1,4-NADH avec une pureté de 100% déjà à -1.5 V. La haute pureté du 1,4-NADH formée sur les deux électrodes nano- modifiée a été prescrite à la formation des liaisons Pt-Hads et Ni-Hads à un potentiel nettement inférieur à celui sur une surface nue en GC. Il a été constaté que la pureté du 1,4-NADH régénérée sur les électrodes nano-modelées est dépendante du potentiel d'électrode, de la taille des nanoparticules et de leur couverture de la surfacique. Compte tenu de l'apport énergétique le coût de l'électrode, et le pourcentage de récupération du 1,4-NADH (i.e. sa pureté), l'électrode GC-Ni a été suggéré l'électrode de choix pour la régénération du 1,4-NADH parmi tous les électrodes étudiés (GC, CNF, Ti, Co, Cd, Ni, GC-Pt et GC-Ni).

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.117104
Date January 2013
CreatorsAli, Irshad
ContributorsSasha Omanovic (Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Chemical Engineering)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0028 seconds