Return to search

Thermal analysis of aluminum foundry alloys by a novel heat pipe probe

A new application of heat pipes is introduced. The present research deals with the development of a heat pipe for the on-line quality control of liquid aluminum silicon foundry alloys. / Thermal analysis is a technique whereby a small quantity of a melt is allowed to solidify while its cooling curve is recorded. Analysis of the cooling curve with standard mathematical algorithms allows one to determine a number of useful parameters that characterize the liquid and solid states of the material. In aluminum-silicon casting alloys thermal analysis is often used to assess the grain size and degree of eutectic modification of the alloy before pouring. / A novel probe has been developed for conducting thermal analysis of aluminum alloy melts. The probe, which resides in the melt, need not be withdrawn as it solidifies a small sample (i.e. button) at a predetermined cooling rate. Once the cooling curve results have been acquired, the probe can be instructed to remelt the frozen button and await instructions for analyzing a fresh sample. / The operating principle of this novel device is based on heat pipe technology. In simple terms, a heat pipe consists of a condenser and an evaporator which contain a relatively small quantity of working substance fluid. As heat is absorbed by the evaporator, the liquid phase of the working substance is vaporized and subsequently condensed on the condenser walls from which heat is extracted. / It has been shown that the designed probe, which is classified as a gas loaded annular thermosyphon, is completely workable in the range of conditions typically encountered in the thermal analysis of aluminum alloys. The thermal analysis results obtained with this new technique are in a good agreement with those of conventional thermal analysis. In addition, the new method is applicable to a wider range of operating conditions and is easier to use. Based on the semi-continuous nature of the new method, it does not need pre-preparation (materials, labour, pre-heating, thermocouple installation for each test, isolation of the sampling cup, etc.) to start thermal analysis. Also, from a cooling rate point of view, the system is well controllable. Moreover, it is shown that the probe is simple in construction, easy to use, and intelligent enough to provide semi-continuous thermal analysis. There are no consumable materials and moving parts. / Thermal analysis results are reported for pure aluminum, hypoeutectic aluminum silicon (356) and eutectic aluminum silicon (413) casting alloys. Agreement in the results between the new and conventional systems is shown to be excellent. Finally, a heat transfer/solidification model of the heat pipe thermal analysis probe is derived and validated.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.28846
Date January 1995
CreatorsMeratian Isfahani, Mahmood
ContributorsGruzleski, John E. (advisor), Mucciardi, Frank (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Mining and Metallurgical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001459581, proquestno: NN05756, Theses scanned by UMI/ProQuest.

Page generated in 0.5575 seconds