Return to search

Gas absorption kinetics in STR's

Experiments were carved out in a stirred tank reactor with both two phase and three phase systems. A systematic examination of the effect of solid particles on parameters such as volumetric liquid-side mass transfer coefficient kLa, specific interfacial area a, gas holdup epsilong, bubble size dB, and average bubble residence time tau, was conducted. Both dimensional and dimensionless correlations were generated and conclusions were drawn. / The work was carried out in the context of the industrial experience that stirred tank reactors are widely used in both metallurgical and chemical engineering processes that often involve gas absorption in two and three phase systems. The effect of solids loading on the oxygen absorption rate in stirred tank reactors is complex due to the interactions between bubbles and solid particles, and also between other parameters. The measurement of some parameters, such as bubble size, specific interfacial area, volumetric mass transfer coefficient, is difficult, and there are many discrepancies in the literature with respect to the form of the correlation for oxygen absorption rate and bubble size and also the explanation of the internal mechanisms. / The present work found that kLa decreased with increasing solids volume fraction. This decrease was as much as 50% when solids loading was increased from 0 (water) to 14 vol% at a superficial gas velocity of 0.64 cm/s and a impeller speed of 400 rpm. The primary reason for this was due to the enhancing effect of solids on bubble coalescence and the increase of slurry density. Kolmogroff's turbulence theory was proved not applicable to the present STR and conditions. The cause for this was believed to be due to the fact that the power density in the STR was far from homogeneous, and the dynamic equilibrium between bubble breakup and the bubble coalescence was not established. / Bubble size, dB, was found to be increased by increasing solids volume fraction. The increase was due to the direct enhancing effect of solids on bubble coalescence and due to less bubble recirculation, i.e., change of the bulk flow pattern, with increased solids loading. There was no direct relationship found between a change of the apparent viscosity of slurry and a change of bubble size. Therefore, the manner by which many people incorporated apparent viscosity into the correlation of dB is inappropriate. / To properly describe the extent of bubble coalescence in three phase systems, a new parameter, the coalescence factor, fc, was defined in the present work. It was found that the coalescence factor decreased with increasing solids volume fraction and power input, but decreased with increasing superficial gas velocity.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.36732
Date January 2000
CreatorsXia, Qi, 1962-
ContributorsHarris, Ralph (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Mining and Metallurgical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001763108, proquestno: NQ64694, Theses scanned by UMI/ProQuest.

Page generated in 0.0016 seconds