Return to search

Physical modelling of gas stirred metallurgical reactors containing two liquids

The present work represents a study of the mixing and slag entrainment behaviour of metallurgical processes. Two immiscible fluids were mixed in a model reactor, equipped with a single centrally located tuyere, through which air was blown. / For low energy input systems, it was found that the thickness of the second liquid phase can significantly affect the mixing time of the bulk phase by altering the fluid flow pattern of the liquid. The entrainment of the upper phase into the lower phase was also affected by the thickness of the upper phase, as well as by the intensity of bath agitation. At low flowrates, the number density of entrained droplets was constant with time, increasing with increasing agitation and thickness of the layer. The air flow required for the transition in the entrainment behaviour increased with an increase in the thickness of the upper phase.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.59908
Date January 1991
CreatorsVerhelst, Dominic
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Mining and Metallurgical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001237366, proquestno: AAIMM67458, Theses scanned by UMI/ProQuest.

Page generated in 0.002 seconds