Return to search

Field and laboratory studies of mine backfill design criteria / v.1. [Text] -- v.2. Appendix.

This work develops a backfill design procedure aimed to facilitate the optimization of an available mine material in order to meet target objectives in a particular mining role. This required the compilation and analysis of data on fill usage, established design procedures, physical and geomechanical properties, testing techniques and procedures, as well as behavioural modelling methods. / A backfill classification system is proposed based upon size distribution. A series of design equations are presented which relate to this system. These equations represent the means by which backfill geomechanical behaviour can be related to physical properties. This is considered to be fundamental to an effective backfill design procedure. Derivation of the equations has been based upon analysis of data from a program of laboratory and in situ testing conducted in ten operating Canadian mines by the author, together with other published work. / The in situ testing required the development of a pressuremeter testing procedure novel to underground mining. The theoretical basis for the employment of pressuremeter data has been examined and behavioral equations have been developed to describe the deformation and stress history during a backfill material test. In addition two new equations have been developed for the analysis of pressuremeter data. The in situ data collected has been correlated with laboratory derived geomechanical data for the same backfill materials. / The geomechanical properties associated with the proposed backfill classifications have also been related to their influence on backfill behaviour in three mine backfill roles: free standing stability during pillar recovery in bulk mining methods; dynamic interaction with stope walls in rockburst prone ground; and ability to reduce stresses in highly stressed rock masses. This work has been based on new and established modelling methods and aims to provide insight into the effectiveness of the backfill classes in these roles of growing practical significance.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.74360
Date January 1987
CreatorsPiciacchia, Luciano, 1959-
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Mining and Metallurgical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001067984, proquestno: AAINN64094, Theses scanned by UMI/ProQuest.

Page generated in 0.0015 seconds