Return to search

Fabrication, Characterization and Modeling of Functionally Graded Materials

In the past few decades, a number of theoretical and experimental studies for design, fabrication and performance analysis of solar panel systems (photovoltaic/thermal systems) have been documented. The existing literature shows that the use of solar energy provides a promising solution to alleviate the shortage of natural resources and the environmental pollution associated with electricity generation. A hybrid solar panel has been invented to integrate photovoltaic (PV) cells onto a substrate through a functionally graded material (FGM) with water tubes cast inside, through which water flow serves as both a heat sink and a solar heat collector. Due to the unique and graded material properties of FGMs, this novel design not only supplies efficient thermal harvest and electrical production, but also provides benefits such as structural integrity and material efficiency.
In this work, a sedimentation method has been used to fabricate aluminum (Al) and high-density polyethylene (HDPE) FGMs. The size effect of aluminum powder on the material gradation along the depth direction is investigated. Aluminum powder or the mixture of Al and HDPE powder is thoroughly mixed and uniformly dispersed in ethanol and then subjected to sedimentation. During the sedimentation process, the concentration of Al and HDPE particles temporally and spatially changes in the depth direction due to the non-uniform motion of particles; this change further affects the effective viscosity of the suspension and thus changes the drag force of particles. A Stokes' law based model is developed to simulate the sedimentation process, demonstrate the effect of manufacturing parameters on sedimentation, and predict the graded microstructure of deposition in the depth direction.
In order to improve the modeling for sedimentation behavior of particles, the Eshelby's equivalent inclusion method (EIM) is presented to determine the interaction between particles, which is not considered in a Stokes' law based model. This method is initially applied to study the case of one drop moving in a viscous fluid; the solution recovers the closed form classic solution when the drop is spherical. Moreover, this method is general and can be applied to the cases of different drop shapes and the interaction between multiple drops. The translation velocities of the drops depend on the relative position, the center-to-center distance of drops, the viscosity and size of drops. For the case of a pair of identical spherical drops, the present method using a linear approximation of the eigenstrain rate has provided a very close solution to the classic explicit solution. If a higher order of the polynomial form of the eigenstrain rate is used, one can expect a more accurate result.
To meet the final goal of mass production of the aforementioned Al-HDPE FGM, a faster and more economical material manufacturing method is proposed through a vibration method. The particle segregation of larger aluminum particles embedded in the concentrated suspension of smaller high-density polyethylene is investigated under vibration with different frequencies and magnitudes. Altering experimental parameters including time and amplitude of vibration, the suspension exhibits different particle segregation patterns: uniform-like, graded and bi-layered. For material characterization, small cylinder films of Al-HDPE system FGM are obtained after the stages of dry, melt and solidification.
Solar panel prototypes are fabricated and tested at different water flow rates and solar irradiation intensities. The temperature distribution in the solar panel is measured and simulated to evaluate the performance of the solar panel. Finite element simulation results are very consistent with the experimental data. The understanding of heat transfer in the hybrid solar panel prototypes gained through this study will provide a foundation for future solar panel design and optimization.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D85H7PGZ
Date January 2013
CreatorsLee, Po-Hua
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0171 seconds