Return to search

Two-dimensional Navier Stokes simulations of instability waves in a flat plate boundary layer flow at M = 4.5

This thesis addresses the investigation of mechanisms involved in the transition from laminar to turbulent flow. The flow studied is a compressible flat plate boundary layer at a free stream velocity of M = 4.5. The two-dimensional compressible unsteady Navier Stokes equations are solved numerically in a rectangular region at a distance downstream from the leading edge. Disturbances are introduced by periodical suction and blowing through a slot in the wall. These disturbances propagate downstream in the flow field. At every point in the flow field the response of the flow is analyzed using a Fourier analysis in time. Results obtained are interpreted with reference to linear stability theory. One important result is the existence of multiple undamped waves for one wave frequency. The second important result demonstrates that an amplified wave of a certain frequency can generate disturbances at multiples of its frequency which may then be amplified more strongly.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/278125
Date January 1992
CreatorsGottmann, Matthias, 1964-
ContributorsFasel, Hermann F.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0119 seconds