Return to search

Resin and fatty acid toxicity reduction by advanced oxidative processes

Resin and fatty acids (RFAs) are the major toxic constituents of pulp and paper mill effluent. RFAs are toxic to aquatic life at low concentrations (2 ppm). The concentration and type of RFAs in the wastewater vary with wood source and mill process. The E-stage effluent contributes only 5-10% of the total plant wastewater discharges, yet most of the total wastewater toxicity and color is attributed to the E-stage. The focus of this research project was to determine which of four Advanced Oxidative Processes (Ozone, Ozone with Hydrogen Peroxide, Ozone with Ultraviolet 254nm light, Ozone with Hydrogen Peroxide and UV254nm light) produces the highest reduction of toxicity for a simulated E-stage wastewater. The treated water was characterized by UV absorbance scans, total organic carbon analysis, Gas Chromatography/Mass Spectroscopy and Microtox toxicity. The highest reduction of toxicity was achieved by 94.4 mg/L (30 minutes contact time) of Ozone transferred.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/278623
Date January 1997
CreatorsYoung, Craig Wiliam, 1970-
ContributorsSierka, Raymond A.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0014 seconds