Return to search

Controlled cooling of permanent mold castings of aluminum alloys

The permanent mold casting process is a relatively popular and effective casting technology that can produce near-net-shape aluminum components with integrity, particularly for the automotive and aerospace industries. It is well recognized by the casting industry that it is essential to control the cooling of permanent mold castings in order to improve the quality of the castings, so there is a considerable incentive to develop a more effective method of mold cooling to control the temperature distribution of the mold and the casting. The current technologies for controlled cooling are air or water cooling passages and chill inserts. Each of these cooling methods presents certain disadvantages, and none offer optimum cooling control. Based on these considerations, a novel, effective and controllable water-based heat pipe has been successfully developed to be used as a new method of permanent mold cooling where high heat fluxes are normally encountered. Heat pipes featuring this design have been incorporated in an experimental permanent mold made of HI3 tool steel that contains three symmetric steps. Computer modeling for the permanent mold casting process has been accomplished to predict the effect and potential of heat pipe cooling for permanent mold casting. Castings of A3 56 alloy have been produced by this permanent mold. The effects of heat pipe cooling on permanent mold castings have been evaluated by analyzing the temperature distribution of the mold and the casting, as well as by measuring the dendrite arm spacing and shrinkage distribution of the castings. The effect of heat pipe cooling on the mold solidification time of castings of A356 alloy with different coating types was also studied. Industrial trials have been carried out to evaluate this new cooling technology on an industrial scale casting machine. Because the space around the mold installed on a low pressure die casting machine is very limited, it is often very difficult to install the heat pipe in the specific desired location in the mold. A new version flexible heat pipe cooling system has been developed for the industrial casting process. Preliminary and industrial tests of the heat pipe cooling system have been performed. The effects of heat pipe cooling, as well as the effects of using traditional water and air cooling on the low pressure die casting were studied. Data on the cooling rates obtained by heat pipes, as well as some microstructures and measurements of the dendrite arm spacing are presented in this thesis. Modeling and experimental results have shown that the water based heat pipe can provide high cooling rates in casting processes. The dendrite arm spacing (DAS) of A356 alloy is refined considerably by the heat pipes, and changes in the shrinkage pattern are provided by the dramatic changes in the heat flow patterns.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.19619
Date January 2003
CreatorsZhang, Chunhui
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Mining, Metals and Materials Engineering)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002022493, Theses scanned by McGill Library.

Page generated in 0.0015 seconds