Return to search

Modelling metallurgical phenomena in ladle and tundish steel processing operations

Cleanness and uniformity in steel properties are important for high quality steel. Physical and/or mathematical models can be used in order to achieve optimum conditions for the clean steel during steelmaking processes. In the present study, important metallurgical transport phenomena in steelmaking ladles and tundishes have been investigated using both mathematical and physical (water) models. / Through appropriate solutions of the Navier-Stokes equations, the intermixing of fluid within gas-stirred ladles can be modelled quite satisfactorily. It is shown that off-centered bubbling gives the most consistent results in terms of minimising mixing times, since angular velocity components intermix fluid across the width of a ladle. Comparisons between mathematical and experimental data are presented. / Fluid flow, heat transfer and inclusion flotation have been modelled mathematically for testing the behaviour of several tundish designs. Computations are presented to illustrate the importance of thermal natural convection currents in mixing the upper and lower layers of steel. Particle removal rates are also experimentally studied with the aid of the novel E.S.Z. (Electric Sensing Zone) system, and compared with computational results.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.74277
Date January 1989
CreatorsJoo, Sanghoon
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Mining and Metallurgical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001072542, proquestno: AAINN63467, Theses scanned by UMI/ProQuest.

Page generated in 0.0016 seconds