In this study a technique--that almost completely eliminates shrinkage microporosity--has been developed which uses small additions of strontium together with risers and chills to produce porosity-free AZ91C (Mg/Al/Zn) magnesium casting alloy castings. With the optimum level of Sr addition (0.01% to 0.02% Sr), shrinkage microporosity was removed from the casting and concentrated in the riser. The castings were already grain-refined by carbon inoculation. The effect of strontium is explained by a further reduction in the grain size of the castings from 250$ mu$m to 120$ mu$m. This effect produces a much denser casting due to increased mass feeding. In addition, a slow grain growth rate, caused by Sr addition, may keep the liquid intergranular-channel radius large during the final stages of solidification, and results in improved intergranular feeding. Another effect of strontium addition may possibly be attributed to a decrease in the surface tension and viscosity of the liquid AZ91C alloy, which in turn increases capillary feeding of the liquid metal. (Abstract shortened by UMI.)
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.22409 |
Date | January 1990 |
Creators | Aliravci, A. |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Engineering (Department of Mining and Metallurgical Engineering.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001270843, proquestno: MM72111, Theses scanned by UMI/ProQuest. |
Page generated in 0.0031 seconds